Drought, as a result of global climate change, is the most important factor affecting food production and security worldwide. Although rice yields in irrigated areas have increased 2 to 3 times over last three decades, but the increase in rainfed farming was quite small. The experiment was conducted to evaluate drought tolerance in terms of agronomic and yields traits of 26 rice accessions including imported and local varieties and breeding lines at three critical stages: tillering stage 28 days after transplanting (Stage 1), booting stage 15 days before flowering (Stage 2) and 7 days after flowering (Stage 3). H2 , H8 , H13 , H14 , H22 , H27 , H32 , H41 , H42 , H43 , H45 and H52 were identified as drought tolerant at tillering stage; H8, H14, H16, H27, H41, H43 and, H45 at booting stage; and H8, H27, H41, H43, and H52 at flowering - ripening stagef. Combined with performance indicators and some other basic criteria, we initially selected 7 accessions H8 , H12 , H14 , H20 , H27 , H42 and H45 with drought tolerance and good yield potential for future breeding work.