Modelling for Growth of Mould

Received: 29-05-2012

Accepted: 12-08-2012

DOI:

Views

2

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Thien, D., Hoa, T., Thuy, N., & Huong, T. (2024). Modelling for Growth of Mould. Vietnam Journal of Agricultural Sciences, 10(5), 792–797. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1702

Modelling for Growth of Mould

Dao Thien (*) 1 , Tran Thanh Hoa 2 , Nguyen Thi Bich Thuy 1 , Tran Thi Lan Huong 1

  • 1 Khoa Công nghệ thực phẩm, Trường Đại học Nông nghiệp Hà Nội
  • 2 Viện Công nghệ sinh học - Công nghệ thực phẩm, Trường Đại học Bách khoa Hà Nội
  • Keywords

    Food, mycotoxin, modelling, mould, prediction

    Abstract


    Predictive mycology aims at predicting fungal development in foods and raw products. For many years, most of the studies concerned food pathogenic bacteria. Recently, there is a growing concern about food contamination by moulds, especially strains responsible for mycotoxins production. This paper advocates the use of specific models for describing germination and growth of mould.

    References

    Alferez, F., H-L Liao, J. K. Burns (2012). Blue light alters infection by Penicillium digitatum in tangerines. Postharvest Biology and Technology. 63(1) 11-15

    Alber, S.A., and D.W. Schaffner (1992). Evaluation of data transformations used with the square root and Schoolfield models for predicting bacterial growth rate. Appl. Environ. Microbiol. 58:3337-3342.

    Betts, G.D., Linton, P. Betteridge, R.J. (2000). Synergistic effects of sodium chloride, temperature and pH on growth of a cocktail of spoilage yeasts. Food Microbiol. 17, 47-52.

    Cuppers, H.G.A.M., Oomes, S. and S. Brul. (1997). A model combined effects of temperature and salt concentration on growth rate of food spoilage molds. Appl. Environ. Microbiol. 63:3764-3769

    Dantigny, P., Guilmart, A. & Bensoussan, M. (2005a) Basis of predictive mycology. Int. J. Food. Microbiol. 100(1-3), 187-96.

    Dantigny, P., Tchobanov, I., Bensoussan, M. & Zwietering, M.H. (2005b) Modeling the effect of ethanol vapor on the germination time of Penicillium chrysogenum. J. Food. Prot. 68(6), 1203-7.

    Dantigny, P. & Nanguy, S.P.-M. (2009) Significance of the physiological state of fungal spores. Int. J. Food Microbiol. in press.

    Franz, E., and van Bruggen, A.H. (2008). Ecology of E. coli O157:H7 and Salmonella enterica in the primary vegetable production chain. Crit Rev Microbiol. 34 (3-4) 143-161

    Frisvad, J. Cand Thrane, U.(2004) Mycotoxin production by common filamentous fungi. Introduction to food- and airborne fungi. pp 321-331

    Harris, K., Miller, M.F., Longergan, G.H. and Brashears, M.M. (2006). Validation of organic acids and acidified sodium chlorite to reduce Escherichia coli O157 and Salmonella Typhimurium in beef trim and ground beef in a simulated processing environment. J. Food Prot. 69, 1802-1807

    Ingham, S.C., Searls, G. and Buege, D.R. (2006). Inhibition of Salmonella serovars, Escherichia coli O157:H7 and Listeria monocytogenes during dry-curing and drying of meat: A case study with basturma. J. Food Safety 26, 160-172.

    Jiang, Y., Zhang, Z., Joyce, C. D., Ketsa, S. (2002). Postharvest biology and handling of longan fruit (Dimocarpus longan Lour). Postharvest Biology and Technology. 26(3) 241-252.

    Kinay, P., Yildiz, F., Sen, F., Yildiz, M., Karacali, I. (2005). Intergration of pre and postharvest treatment to minimize Penicillium decay of Satsuma mandarins. Postharvest Biology and Technology. 37(1) 31-36.

    Leifert, C., Ball, K., Volakakis, N., Cooper, J. M. (2008). Control of enteric pathogens in ready-to-eat vegetable crops in organic and 'low input' production systems: a HACCP-based approach. J Appl Microbiol 105 (4) 931-950

    Morales, H., S. Marín, A. Ramos, V. Sanchis (2010). Influence of post-harvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: A review. Food Control. 21(7) 953-962

    Sakaridis, I., Soultos, N., Iossifidou, E., Koidis, P., Ambrosiadis, I. (2011). Prevalence and antimicrobial resistance of Salmonella serovars from chicken carcasses. Journal of Food Safety. 31 (2) 203–210

    Sweeney, M. J and Dobson, A. D. W. (1998). Mycotoxin production by Aspergillus, Fusarium and Penicillium species. International Journal of Food Microbiology 43 (3) 141-158

    Sautour, M., Dantigny, P., Divies, C. Bensoussan, M. (2001). A temperature-type model for describing the relationship between fungal growth and water activity. Int. J. Food Microbiol. 67, 63-69.

    Sautour, M., Rouget, A., Dantigny, P., Divies, C. Bensoussan, M. (2001). Prediction of conidial germination of Penicillium chrysogenum as influenced by temperature, water activity and pH. Lett. Appl. Microbiol. 32, 131-134.

    Sautour, M., Dantigny, P., Divies, C. & Bensoussan, M. (2001a) A temperature-type model for describing the relationship between fungal growth and water activity. Int. J. Food. Microbiol. 67(1-2), 63-69.

    Sautour, M., Rouget, A., Dantigny, P., Divies, C. & Bensoussan, M. (2001b) Application of Doehlert design to determine the combined effects of temperature, water activity and pH on conidial germination of Penicillium chrysogenum. J. Appl. Microbiol. 91(5), 900-906.

    Sautour, M., Rouget, A., Dantigny, P., Divies, C. & Bensoussan, M. (2001c) Prediction of conidial germination of Penicillium chrysogenum as influenced by temperature, water activity and pH. Lett. Appl. Microbiol. 32(3), 131-104.