Received: 29-05-2012
Accepted: 12-08-2012
DOI:
Views
Downloads
How to Cite:
Modelling for Growth of Mould
Keywords
Food, mycotoxin, modelling, mould, prediction
Abstract
Predictive mycology aims at predicting fungal development in foods and raw products. For many years, most of the studies concerned food pathogenic bacteria. Recently, there is a growing concern about food contamination by moulds, especially strains responsible for mycotoxins production. This paper advocates the use of specific models for describing germination and growth of mould.
References
Alferez, F., H-L Liao, J. K. Burns (2012). Blue light alters infection by Penicillium digitatum in tangerines. Postharvest Biology and Technology. 63(1) 11-15
Alber, S.A., and D.W. Schaffner (1992). Evaluation of data transformations used with the square root and Schoolfield models for predicting bacterial growth rate. Appl. Environ. Microbiol. 58:3337-3342.
Betts, G.D., Linton, P. Betteridge, R.J. (2000). Synergistic effects of sodium chloride, temperature and pH on growth of a cocktail of spoilage yeasts. Food Microbiol. 17, 47-52.
Cuppers, H.G.A.M., Oomes, S. and S. Brul. (1997). A model combined effects of temperature and salt concentration on growth rate of food spoilage molds. Appl. Environ. Microbiol. 63:3764-3769
Dantigny, P., Guilmart, A. & Bensoussan, M. (2005a) Basis of predictive mycology. Int. J. Food. Microbiol. 100(1-3), 187-96.
Dantigny, P., Tchobanov, I., Bensoussan, M. & Zwietering, M.H. (2005b) Modeling the effect of ethanol vapor on the germination time of Penicillium chrysogenum. J. Food. Prot. 68(6), 1203-7.
Dantigny, P. & Nanguy, S.P.-M. (2009) Significance of the physiological state of fungal spores. Int. J. Food Microbiol. in press.
Franz, E., and van Bruggen, A.H. (2008). Ecology of E. coli O157:H7 and Salmonella enterica in the primary vegetable production chain. Crit Rev Microbiol. 34 (3-4) 143-161
Frisvad, J. Cand Thrane, U.(2004) Mycotoxin production by common filamentous fungi. Introduction to food- and airborne fungi. pp 321-331
Harris, K., Miller, M.F., Longergan, G.H. and Brashears, M.M. (2006). Validation of organic acids and acidified sodium chlorite to reduce Escherichia coli O157 and Salmonella Typhimurium in beef trim and ground beef in a simulated processing environment. J. Food Prot. 69, 1802-1807
Ingham, S.C., Searls, G. and Buege, D.R. (2006). Inhibition of Salmonella serovars, Escherichia coli O157:H7 and Listeria monocytogenes during dry-curing and drying of meat: A case study with basturma. J. Food Safety 26, 160-172.
Jiang, Y., Zhang, Z., Joyce, C. D., Ketsa, S. (2002). Postharvest biology and handling of longan fruit (Dimocarpus longan Lour). Postharvest Biology and Technology. 26(3) 241-252.
Kinay, P., Yildiz, F., Sen, F., Yildiz, M., Karacali, I. (2005). Intergration of pre and postharvest treatment to minimize Penicillium decay of Satsuma mandarins. Postharvest Biology and Technology. 37(1) 31-36.
Leifert, C., Ball, K., Volakakis, N., Cooper, J. M. (2008). Control of enteric pathogens in ready-to-eat vegetable crops in organic and 'low input' production systems: a HACCP-based approach. J Appl Microbiol 105 (4) 931-950
Morales, H., S. Marín, A. Ramos, V. Sanchis (2010). Influence of post-harvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: A review. Food Control. 21(7) 953-962
Sakaridis, I., Soultos, N., Iossifidou, E., Koidis, P., Ambrosiadis, I. (2011). Prevalence and antimicrobial resistance of Salmonella serovars from chicken carcasses. Journal of Food Safety. 31 (2) 203–210
Sweeney, M. J and Dobson, A. D. W. (1998). Mycotoxin production by Aspergillus, Fusarium and Penicillium species. International Journal of Food Microbiology 43 (3) 141-158
Sautour, M., Dantigny, P., Divies, C. Bensoussan, M. (2001). A temperature-type model for describing the relationship between fungal growth and water activity. Int. J. Food Microbiol. 67, 63-69.
Sautour, M., Rouget, A., Dantigny, P., Divies, C. Bensoussan, M. (2001). Prediction of conidial germination of Penicillium chrysogenum as influenced by temperature, water activity and pH. Lett. Appl. Microbiol. 32, 131-134.
Sautour, M., Dantigny, P., Divies, C. & Bensoussan, M. (2001a) A temperature-type model for describing the relationship between fungal growth and water activity. Int. J. Food. Microbiol. 67(1-2), 63-69.
Sautour, M., Rouget, A., Dantigny, P., Divies, C. & Bensoussan, M. (2001b) Application of Doehlert design to determine the combined effects of temperature, water activity and pH on conidial germination of Penicillium chrysogenum. J. Appl. Microbiol. 91(5), 900-906.
Sautour, M., Rouget, A., Dantigny, P., Divies, C. & Bensoussan, M. (2001c) Prediction of conidial germination of Penicillium chrysogenum as influenced by temperature, water activity and pH. Lett. Appl. Microbiol. 32(3), 131-104.