Technical Advances in Reproduction: Applications in Medicine and Agriculture

Received: 18-04-2017

Accepted: 26-07-2017

DOI:

Views

2

Downloads

0

Section:

NÔNG HỌC

How to Cite:

Thuan, N. (2024). Technical Advances in Reproduction: Applications in Medicine and Agriculture. Vietnam Journal of Agricultural Sciences, 15(7), 933–939. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1387

Technical Advances in Reproduction: Applications in Medicine and Agriculture

Nguyen Van Thuan (*) 1

  • 1 Khoa Công nghệ Sinh học, Đại học Quốc tếvà Đại học Quốc gia thành phố Hồ Chí Minh
  • Keywords

    ICSI, ROSI, SCNT, Blastocyst injection

    Abstract


    In mammals, reproduction is the ability to generate next generation through the fertilization of a mature egg and a sperm. Nowadays, with the development of modern reproductive biotechnology, several advanced techniques have been applied and able to generate new generations from somatic cellsandstem cells or from immature eggs and sperms. In the present paper, the advances in reproduction over the past 20 yearsare sumarized and presented including: (1) intracytoplasmic sperm injection (ICSI) and application of this method to treat infertility and production of transgenic animals, (2) round spermatid injection (ROSI) and itsapplication on treatment of infertility without spermatozoa, (3) Somatic cell nuclear transfer (SCNT), also known as animal cloning, and (4) the method to generate new generation by pluripotent stem cells injected into tetraploid blastocysts.The application potential of the modern reproductive methods in medicine and agriculturewas discussed.

    References

    Bui H. T., Wakayama S., Kishigami S., Kim J. H., Van Thuan N., Wakayama T. (2008). The cytoplasm of mouse germinal vesicle stage oocytes can enhance somatic cell nuclear reprogramming. Development, 135: 3935-3945.

    Edwards R. G., Steptoe P. C. and Purdy J. M. (1980). Establishing full‐term human pregnancies using cleaving embryos grown in vitro. Br J. Obstet Gynecol, 87: 737-756.

    Goto K., Kinoshita A., Takuma Y., Ogawa K. (1990). Fertilization in sperm injection in cattle. Theriogenology, 33: 238.

    Hayashi S., Yang J., Christenson L., Yanagimachi R., Hecht N. B. (2003). Mouse preimplantation embryos developed from oocytes injected with round spermatids or spermatozoa have similar but distinct patterns of early messenger RNA expression. Biol Reprod., 69(4): 1170-1176.

    Hiramoto, Y. (1962). Microinjection of the live spermatozoa into sea urchin eggs. Exp. Cell Res., 27: 416-426.

    Hosoi Y., Miyake M., Utsumi K., Iritani A. (1988). Development of rabbit oocytes after microinjection of spermatozoa. Proc 11th Int Cong Anim Reprod A I (Dublin), 3(331).

    Inoue K., Kohda T., Lee J., Ogonuki N., Mochida K, Noguchi Y, Tanemura K, Kaneko - Ishino T, Ishino F, Ogura A (2002). Faithful expression of imprinted genes in cloned mice. Science, pp. 295: 297.

    Kang Y. K., Koo D. B., Park J. S., Choi Y. H., Chung A. S., Lee K. K., Han Y. M. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet., 28: 173-177.

    Kishigami S., Mizutani E., Ohta H., Hikichi T., Thuan N. V., Wakayama S., Bui H. T., Wakayama T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun, 340: 183-189.

    Kishigami, S., Van Thuan, N., Wakayama, S., Hikichi, T., and Wakayama, T (2004). A novel method for isolating spermatid nuclei from cytoplasm prior to ROSI in the mouse. Zygote., 12(4): 321-327.

    Ogura A., Matsuda J., Yanagimachi R. (1994). Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc Natl Acad Sci U S A., 91(16): 7460-7462.

    Palermo G., Joris H., Devroey P., Van Steirteghem A. C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet., 340(8810): 17-18.

    Perry, A. C. F., T. Wakayama, H. Kishikawa, T. Kasai, M. Okabe, Y. Toyoda, and R. Yanagimachi (1999). Mammalian transgenesis by intracytoplasmic sperm injection. Science, 284: 1180-1183.

    Tanaka A., Nagayoshi M., Takemoto Y., Tanaka I., Kusunoki H., Watanabe S., Kuroda K., Takeda S., Ito M., Yanagimachi R. (2015). Fourteen babies born after round spermatid injection into human oocytes. Proc Natl Acad Sci. USA, 112(47): 14629-14634.

    Uehara T., Yanagimachi R. (1976). Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod., 15: 467-470.

    Van Thuan N., Bui H. T., Kim J. H., Hikichi T., Wakayama S., Kishigami S., Mizutani E., Wakayama T. (2009). The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full - term development in cloned inbred mice. Reproduction, 138: 309-317.

    Van Thuan N., Wakayama S., Kishigami S., Wakayama T. (2005). New preservation method for mouse spermatozoa without freezing. Biol Reprod., 72: 444-450.

    Van Thuan N., Kishigami S., Wakayama T. (2010). How to improve the success rate of mouse cloning technology. J Reprod Dev., 56(1): 20-30.

    Van Thuan N., Wakayama S., Kishigami S., Wakayama T. (2006). Donor centrosome regulation of initial spindle formation in mouse somatic cell nuclear transfer: roles of gamma - tubulin and nuclear mitotic apparatus protein 1. Biol Reprod., 74(5): 777-787.

    Wakayama T., Yanagimachi R. (1998). Development of normal mice from oocytes injected with freeze - dried spermatozoa. Nat Biotechnol., 16: 639-641.

    Wakayama S., Kohda T., Obokata H., Tokoro M., Li C., Terashita Y., Mizutani E., Nguyen V. T., Kishigami S., Ishino F., Wakayama T. (2013). Successfuls serial recloning in the mouse over multiple generations. Cell Stem Cell, 12(3): 293-297.

    Wakayama T., Perry A. C. F., Zuccotti M., Johnson K. R. and Yanagimachi R. (1998). Full - term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394: 369-374.

    Wilmut I., Schnieke A. E., McWhir J., Kind A. J. and Campbell K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810-813.

    Lan Kang, Jianle Wang, Yu Zhang, Zhaohui Kou, Shaorong Gao Kang (2009). iPS cells can support full - term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5(2): 135-138.

    Park M. R., Lee A. R., Bui H. T., Park C., Park K. K., Cho S. G., Song H., Kim J. H., Van Thuan N., Kim J. H. (2011). Chromosome remodeling and differentiation of tetraploid embryos during preimplantation development. Dev. Dyn., 240: 1660-1669.