The Effects of Blue Led Light ontheGrowth and Flavonoid Accumulation ofBasil (Ocimum basilicumL.) In Vitro

Received: 24-10-2019

Accepted: 02-04-2020

DOI:

Views

0

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Thao, N., Nguyen, T., Kiet, D., & Hoang, P. (2024). The Effects of Blue Led Light ontheGrowth and Flavonoid Accumulation ofBasil (Ocimum basilicumL.) In Vitro. Vietnam Journal of Agricultural Sciences, 18(2), 130–137. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/642

The Effects of Blue Led Light ontheGrowth and Flavonoid Accumulation ofBasil (Ocimum basilicumL.) In Vitro

Nguyen Thi Thu Thao (*) 1 , Tran Hoai Nguyen 1 , Do Thuong Kiet 2, 3 , Phan Ngo Hoang 3

  • 1 Khoa Sinh học - Công nghệ sinh học, Trường Đại họcKhoa học Tự nhiên, ĐHQG-HCM
  • 2 TT Nghiên cứu Ứng dụng Công nghệ cao trong Nông nghiệp, Trường Đại họcKhoa học Tự nhiên
  • 3 Khoa Sinh học - Công nghệ sinh học, Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM
  • Keywords

    Blue LED, Flavonoids, Ocimum basilicumL., phenol compounds, photosynthesis

    Abstract


    Basil is widely cultivated in Vietnam and mostly used for spice and medicinal purposes. In this study, in vitrobasil plants were cultivated under three blue LED light conditions (440, 450, and 460nm,respectively)byusing fluorescent lamps asthecontrol. After four weeks, the morphology, biomass, gas exchange in photosynthesis, chlorophyll, total sucrose, starch, phenol compounds and total flavonoid content of the plants were determined. Under the fluorescent light or blue LED of 450nm, the stem height was lower, but the number of leaves was greater, and the total leaf area was higher than those of plants grown under blue LEDs (440 and 460nm). Root dry mass percentage of the plants under blue LEDs decreased compared to that of the control. Blue LED at 440 and 460nmincreased the percentage of stem dry mass, whereas blue LED light (450nm) increased the percentage of leaves dry mass. Monochromatic blue light reduced photosynthetic rate, chlorophyll a, sucrose, starch, and phenol compounds content of leaves. However, blue LED light (450nm) maintained the carotenoid and flavonoid contents, chlorophyll a/b ratio in leaveswhich were rather highin comparison with the fluorescentlightof the control.

    References

    Baba S.A. & Malik S.A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science.9: 449-454.

    Bùi Trang Việt (2016).Sinh lý thực vật đại cương. Nhà xuất bản Đại học Quốc gia thành phố Hồ Chí Minh. 753tr.

    Casal J. & Smith H. (1989). Effects of blue light pretreatments on internode extension growth in mustard seedlings after the transition to darkness: Analysis of the interaction with phytochrome. Journal of Experimental Botany. 40(217):893-899.

    Carvalho S.D., Schwieterman M.L., Abrahan C.E., Colquhoun T.A. & Folta K.M. (2016). Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Frontiers in plant science. 7: 1328.

    Cardoso N.N.R., Alviano C.S., Blank A.F., Arrigoni-Blank M.D.F., Romanos M.T.V., Cunha M.M.L., Silva A.J.R.D.& Alviano D.S. (2017). Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicumvar. Maria bonita: mechanisms of action and synergism with amphotericin B and Ocimum basilicumessential oil. Pharmaceutical Biology.55(1): 1380-1388.

    Coombs J., HindG., Leegood R.C., Tieszen L.L.& Vonshak A. (1987). Techniques in bioproductivity and photosynthesis. In: Measurement of starch and sucrose in leaves. Pergamon press.169p.

    Đỗ Tất Lợi (2004). Những cây thuốc và vị thuốc Việt Nam. Nhà xuất bản Y học, Hà Nội. 1274tr.

    Eisinger W., Swartz T.E., Bogomolni R.A. & Taiz L. (2000). The ultraviolet action spectrum for stomatal opening in broad bean. Plant Physiology.122(1): 99-106.

    Jensen N.B., Clausen M.R. & Kjaer K.H. (2018). Spectral quality of supplemental LED grow light permanently alters stomatal functioning and chilling tolerance in basil (Ocimum basilicumL.). Scientia Horticulturae. 227: 38-47.

    Khatab H. & El-Khawas S. (2007). Comparative studies on the effects of differents light qualities on Vigna sinensisL. and Phaseolus vulgarisL. seedlings. Research Journal of Agriculture and Biological Sciences.(3): 790-798.

    Lin K.H., Huang M.Y., Huang W.D., Hsu M.H., Yang Z.W. & YangC.M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativaL. var. capitata). Scientia Horticulturae. 150: 86-91.

    Nascimento L.B.S., Leal-Costa M.V., Coutinho, Marcela M.A.S., Moreira N.S., Lage C.L.S., & Barbi N.S., Costa S.S. & Tavares E.S. (2012). Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata(Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light.Photochemistry and photobiology.89(2): 391-399.

    Naznin M.T., Lefsrud M., Gravel V. & Azad M.O.K. (2019). Blue light added with Red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment.Plants. 8(4):93.

    Murashige T. & Skoog F. (1962). A revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiologia plantarum.15: 473-497.

    Pennisi G., Blasioli S., Cellini A., Maia L., Crepaldi A., Braschi I., Spinelli F., Nicola S., Fernandez J.A., Stanghellini C., Marcelis L.F, Orsini1 F.& Gianquinto1 G. (2019). Unravelling the role of red: blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in plant science.10: 305.

    Piovene C., Orsini F., Bosi S., Sanoubar R., Bregola V., Dinelli G. & Gianquinto G. (2015). Optimal red: blue ratio in led lighting for nutraceutical indoor horticulture. Scientia Horticulturae. 193: 202-208.

    Roberts M.R. & Paul N.D. (2006). Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens.New Phytologist.170(4): 677-699.

    Shimizu H., Ma Z., Douzono M.,Tazawa S., Runkle E.S. & Heins R.D. (2006). Blue light inhibitsstem elongation of chrysanthemum. Acta Horticulturae.711: 363-367.

    Suetsugu N., Takami T., Ebisu Y., Watanabe H., Iiboshi C., Doi M. & Shimazaki K. (2014). Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis. PloS one.9(9):e108374..

    Takemiya A., Inoue S., Doi M., Kinoshita T. & Shimazaki K. (2005). Phototropins promote plant growth in response to blue light in low light environments. The Plant cell.17(4): 1120-1127.

    Trettel J.R., Gazim Z.C., Gonçalves J.E., Stracieri J. & Magalhães H.M. (2017). Volatile essential oil chemical composition of basil (Ocimum basilicumL.‘Green’) cultivated in a greenhouse and micropropagated on a culture medium containing copper sulfate. In vitro Cellular & Developmental Biology-Plant. pp.1-10.

    Victório C.P., Lage C.L.S. & Kuster R.M. (2009). Flavonoids extraction from Alpinia zerumbet(Pers.) Burtt et Smith leaves using different procedures. Eclética Química.35: 35-40.

    Wang J., Lu W., Tong Y. & Yang Q. (2016). Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativaL.) exposed to different ratios of red Light to blue light. Frontiers in Plant Science.7, article 250.

    Wellburn A.R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology. 144(3): 307-313.