Assessment of Genetic Diversity of Yellow Waxy Corn Germplasm Based on Phenotype and SSR Markers

Received: 21-12-2022

Accepted: 05-10-2023

DOI:

Views

3

Downloads

0

Section:

NÔNG HỌC

How to Cite:

Duc, N., Tuan, P., Anh, N., Trung, N., Cham, L., & Liet, V. (2024). Assessment of Genetic Diversity of Yellow Waxy Corn Germplasm Based on Phenotype and SSR Markers. Vietnam Journal of Agricultural Sciences, 21(10), 1236–1248. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1207

Assessment of Genetic Diversity of Yellow Waxy Corn Germplasm Based on Phenotype and SSR Markers

Nguyen Trung Duc (*) 1 , Pham Quang Tuan 1 , Nguyen Thi Nguyet Anh 1 , Nguyen Quoc Trung 2 , Le Thi Tuyet Cham 3 , Vu Van Liet 3

  • 1 Viện Nghiên cứu và Phát triển cây trồng, Học viện Nông nghiệp Việt Nam
  • 2 Khoa Công nghệ Sinh học, Học viện Nông nghiệp Việt Nam
  • 3 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • Keywords

    Yellow waxy corn, phenotype, SSR marker, correlation, principal component analysis

    Abstract


    This study aimed to assess the genetic diversity of 15 yellow waxy corn genotypes with 3 check lines using 18 agronomic traits and 14 SSR markers. The field experiment was arranged in a randomized complete block design with 3 replicates in 2022 Spring season in Hanoi. The results showed that single plant grain yield was strongly positively correlatedwith cob diameter (r = 0.72), 100 grains weight (r = 0.62), and number of kernels per row (r = 0.61). Total soluble solids were negatively correlated (P <0.01) with pericarp thickness (r = -0.62). Principal component analysis showed that all of the investigated traits could be used for phenotypic diversity analysis. PIC values ranged from 0.10 (phi072and phi1277) to 0.32 (phi2276). Corn genotypes were classified into 3 groups at the similarity coefficient 45.3 based on phenotype, and into 5 groups at the similarity coefficient 0.21 based on SSR markers. Seven lines viz., YW01, YW03, YW4, YW7, YW12, YW13, YW14 and two checks viz., SWsyn1, UV showed consistent in phenotypic and genotypic grouping. Five promising lines were selected viz., YW10, YW13, YW12, YW07, and YW01 based on MGIDI index with 40% selection pressure.

    References

    Bộ Khoa học và Công nghệ (2021). Tiêu chuẩn quốc gia TCVN 13381-2:2021: Giống cây trồng nông nghiệp - khảo nghiệm giá trị canh tác và giá trị sử dụng phần 2: Giống ngô.

    Choe E. & Rocheford T.R. (2012). Genetic and QTL analysis of pericarp thickness and ear architecture traits of Korean waxy corn germplasm. Euphytica. 183(2): 243-260.

    Harakotr B., Suriharn B., Scott M.P. & Lertrat K. (2014). Genotypic variability in anthocyanins, total phenolics, and antioxidant activity among diverse waxy corn germplasm. Euphytica. 203(2): 237-248.

    Haskell M. J. (2012). The challenge to reach nutritional adequacy for vitamin A: -carotene bioavailability and conversion - evidence in humans. The American Journal of Clinical Nutrition. 96(5): 1193S-1203S.

    Lee J.-S., Bae H.-H., Kim J.-T., Son B.-Y., Baek S.-B., Kim S.-L., Go Y. S., Yi G. & Shin S.-H. (2020). 'Hwanggeummatchal' a single cross hybrid waxy corn with high carotenoid content and good eating quality. Korean Journal of Breeding Science. 52(4): 467-472.

    Muzhingi Yeum, Russell Johnson & Qin Tang (2008). Determination of carotenoids in yellow maize, the effects of saponification and food preparations. International Journal for Vitamin and Nutrition Research. 78(3): 112-120.

    Sandhu S. & Dhillon B. S. (2021). Breeding plant type for adaptation to high plant density in tropical maize - A step towards productivity enhancement. Plant Breeding. 140(4): 509-518.

    So Y.S. (2018). Pericarp thickness of Korean maize landraces. Plant Genetic Resources: Characterization and Utilization. 17(1): 87-90.

    Sukto S., Lomthaisong K., Sanitchon J., Chankaew S., Scott M.P., Lübberstedt T., Lertrat K., Suriharn B. & Serrano M. (2020). Variability in prolificacy, total carotenoids, lutein, and zeaxanthin of yellow small-ear waxy corn germplasm. International Journal of Agronomy. pp. 1-12.

    Tan H., Wang G., Zhao F., Bao F., Han H. & Lou X. (2022). Correlation and cluster analysis of agronomic characters of 115 waxy corn varieties. Maize Genomics and Genetics. 12.

    Ullah A., Shakeel A., Ahmed H. G. M.-D., Naeem M., Ali M., Shah A. N., Wang L., Jaremko M., Abdelsalam N. R., Ghareeb R. Y. & Hasan M. E. (2022). Genetic basis and principal component analysis in cotton (Gossypium hirsutumL.) grown under water deficit condition. Frontiers in Plant Science. 13. doi.org/10.3389/fpls.2022.981369.

    Vũ Đăng Toàn, Vũ Đăng Tường & Vũ Thị Thu Hiền (2021). Đa dạng hình thái của tập đoàn ngô tẻ địa phương thu thập tại tỉnh Lai Châu và Điện Biên. Tạp chí Khoa học Nông nghiệp Việt Nam. 19(8): 997-1005.

    Wu X., Wang B., Xie F., Zhang L., Gong J., Zhu W., Li X., Feng F. & Huang J. (2020). QTL mapping and transcriptome analysis identify candidate genes regulating pericarp thickness in sweet corn. BMC Plant Biology. 20(1): 117.

    Zhao W., Wang S., Chen Y., Zhang M. & Yuan J. (2018). Genetic diversity analysis of waxy corn inbred lines based on 60 core SSR markers. Acta Agriculturae Jiangxi. 30(12): 1-8.

    Zheng H., Wang H., Yang H., Wu J., Shi B., Cai R., Xu Y., Wu A. & Luo L. (2013). Genetic diversity and molecular evolution of Chinese waxy maize germplasm. Plos One. 8(6): e66606.