Identification of the Mating-type Loci of Cordyceps militarisby Multiplex PCR

Received: 01-03-2023

Accepted: 05-10-2023

DOI:

Views

0

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Ly, N., Duy, V., & Tu, D. (2024). Identification of the Mating-type Loci of Cordyceps militarisby Multiplex PCR. Vietnam Journal of Agricultural Sciences, 21(10), 1307–1316. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1199

Identification of the Mating-type Loci of Cordyceps militarisby Multiplex PCR

Nguyen Minh Ly (*) 1 , Vo Ba Duy 1 , Dinh Xuan Tu 2, 3

  • 1 Khoa Sinh - Môi trường, Trường Đại học Sư phạm - Đại học Đà Nẵng
  • 2 Trung tâm Ươm tạo và Hỗ trợ doanh nghiệp khoa học và công nghệ
  • 3 Trung tâm Quốc gia Nghiên cứu Phát triển sâm Ngọc Linh
  • Keywords

    Cordyceps militaris, molecular marker, MAT, multiplex PCR

    Abstract


    In the cross-breeding of Cordyceps militaris using single spores, determining the genotype of the mating type locus is crucial for constructing a cross diagram. Individual PCRshave been conducted to identify the mating type loci MAT1-1 and MAT1-2 in this fungus. The research aimed to design specific primers for Multiplex PCR to efficiently and simply identify mating-type loci in a shorter time. The primer sequences were derived from the sequences of two mating type loci MAT1-1 (AB194982) and MAT1-2 (AB084257) retrieved from the GenBank database using the Primer-BLAST tool. The research results indicate that the Multiplex PCR, comprising three primer pairs MAT1-1-1-MUL, MAT1-1-2-MUL, and MAT1-2-1-MUL, successfully amplified products with sizes of 527bp, 323bp, and 222bp from the MAT1-1-1, MAT1-1-2, and MAT1-2-1 genes, respectively. The Multiplex reaction exhibits high specificity and reliability in determining mating genotypes in C. militaris, making it a valuable tool for applications in breeding selection based on molecular markers in C. militaris.

    References

    Ahn Y.J., Park S.J., Lee S.G., Shin S.C. & Choi D.H. (2000). Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militarisagainst Clostridiumspp. Journal of agricultural and food chemistry. 48(7): 2744-2748.

    Almeida-Silva F., Barbedo L.S., Taylor M.L., Muniz M.D.M., Guimarães A.J. & Zancopé-Oliveira R.M. (2018). Multiplex polymerase chain reaction as an improved method for screening Histoplasma capsulatum mating types. Memórias do Instituto Oswaldo Cruz. 113.

    Bi S., Jing Y., Zhou Q., Hu X., Zhu J., Guo Z., Guo L. Song & Yu R. (2018). Structural elucidation and immunostimulatory activity of a new polysaccharide from Cordyceps militaris. Food & Function. 9(1): 279-293.

    Böhm J., Dahlmann T.A., Gümüşer H. & Kück U. (2015). A MAT1-2 wild‐type strain from Penicillium chrysogenum: functional mating‐type locus characterization, genome sequencing and mating with an industrial penicillin‐producing strain. Molecular microbiology. 95(5): 859-874.

    Doyle J.J. & Doyle J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bullentin. 19(1): 11-15.

    He B.L., You L.R., Ye Z.W., Guo L.Q., Lin J.F., Wei T. & Zheng Q.W. (2018). Construction of novel cold-tolerant strains of volvariella volvacea through protoplast fusion between volvariella volvacea and pleurotus eryngii. Scientia Horticulturae. 230: 161-168.

    Kang N., Hyun-Hee L., Inmyoung P. & Young-Su S. (2017). Development of High cordycepin-producing CordycepsmilitarisStrains. Mycobiology. 45(1): 31-38.

    Lê Văn Kiêm (2021). Nghiên cứu tạo giống nấmCordyceps militaris bằng phương pháp lai bào tử đơn. Luận văn Thạc sỹ. Đại học Sư Phạm - Đại học Đà Nẵng.

    Lee J.H., Hong S.M., Yun J.Y., Myoung H. & Kim M.J. (2011). Anti-cancer effects of cordycepin on oral squamous cell carcinoma proliferation and apoptosis in vitro. Int. J Cancer Ther. 2(2): 224-234.

    Li C.R., Nam S.H. & Geng D.G. (2006). Artificial culture of seventeen Cordycepsspp. Mycosystema. 25(4): 639-645.

    Lin P.J., Ye Z.W., Wei T., Wu J.Y., Zheng Q.W., Chen B.X., Guo L.Q. & Lin J.F. (2021). Cross breeding of novel Cordyceps militarisstrains with high contents of cordycepin and carotenoid by using MAT genes as selectable markers. Scientia Horticulturae. 290: 110492.

    Shonkor K.D.A.S., Shinya F. & Mina M. (2010). Efficient roduction of anticancer agent Cordycepin by repeated batch culture of Cordyceps militarismutant. InProceedings of the World Congress on Engineering and Computer Science. 2.

    Sung J. M. (1996). The insects-born fungus of Korea in color. Kyohak Publishing Co. Ltd., Seoul.

    Sung J.M., Park Y.J., Lee J.O., Han S.K., Lee W.H., Choi S.K. & Shrestha B. (2006). Selection of Superior Strains of Cordyceps militaris with Enhanced Fruiting Body Productivity. Mycobiology. 34(3): 131-137.

    Tan Q., Cai T., Wei J., Feng A., Mao W. & Bao D. (2011). Molecular identification of mating type genes in asexual spores of Cordyceps militaris. InMushroom biology and mushroom products. Proceedings of the 7thInternational Conference on Mushroom Biology and Mushroom Products, Arcachon, France, 4-7 October, 2011. 1(Oral presentations): 52-56. Institut National de la Recherche Agronomique (INRA).

    Waalwijk C., Mendes O., Verstappen E.C., de Waard M.A. & Kema G.H. (2002). Isolation and characterization of the mating-type idiomorphs from the wheat septoria leaf blotch fungus Mycosphaerella graminicola. Fungal Genetics and Biology. 35(3): 277-286.

    Wang G.D. (1995). Ecology, cultivation and application of Cordyceps and Cordyceps sinensis. Scientific and Technical Documents, Beijing.

    Yi Z.L., Huang W.F., Ren Y., Onac E., Zhou G.F., Peng S., Wang X.J. & Li H.H. (2014). LED lights increase bioactive substances at low energy costs in culturing fruiting bodies of Cordyceps militaris. Scientia Horticulturae. 175: 139-143.

    Zheng P., Xia Y.L., Xiao G.H., Xiong C.H., Hu X., Zhang S.W., Zheng H.J., Huang Y., Zhou Y. & Wang S.Y. (2011). Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome biology.12: 1-22.