Effect of Silicon Fertilizer Application on Growth and Anatomical Characteristics of Mondo grass (Ophiopogon JaponicusWall) underNon-irrigated Conditions at Ha Hoa District, Phu Tho Province

Received: 24-06-2022

Accepted: 27-09-2022

DOI:

Views

6

Downloads

0

Section:

NÔNG HỌC

How to Cite:

Hai, N., Vinh, N., & Phu, N. (2024). Effect of Silicon Fertilizer Application on Growth and Anatomical Characteristics of Mondo grass (Ophiopogon JaponicusWall) underNon-irrigated Conditions at Ha Hoa District, Phu Tho Province. Vietnam Journal of Agricultural Sciences, 20(9), 1145–1152. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1053

Effect of Silicon Fertilizer Application on Growth and Anatomical Characteristics of Mondo grass (Ophiopogon JaponicusWall) underNon-irrigated Conditions at Ha Hoa District, Phu Tho Province

Nguyen Thi Thanh Hai (*) 1 , Nguyen Dinh Vinh 1 , Nguyen Van Phu 2

  • 1 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • 2 Hội Khoa học Công nghệ Chè Việt Nam
  • Keywords

    Ophiopogon japonicusWall, non-irrigated, silicon, anatomy, Phu Tho

    Abstract


    The study aimed to evaluate Mondo grass’s growth, productivity, and anatomical characteristics when fertilized with silicon under non-irrigated conditions. A two-factor experiment was conducted in Ha Hoa district, Phu Tho province according toa split-plot design on ferralic gray soil with 6 levels of silicon (0, 20, 30, 40, 50, 60kg SiO2/ha/year) and 2 varieties of Mondo grass (G2 and G6). The results showed that under non-irrigated conditions, the growth of the G6 variety was better than that of G2. The supplemental application of silicon brought about better effect on Mondo grass, increasing the depth and width of the root system, and the leaf area and enhancing the tillering ability and dry matter accumulation. The change in the anatomical structure of Mondo grass leaves and roots increases the ability of the plant to absorb and conduct water better. On haplic acrisols, the level of fertilizer application of 30kg N + 30kg P2O5+ 30kg K2O + 40kgSiO2/ha was is considered suitable for Mondo grass. At this level, the yield of Mondo grass was the highest (at 3.7 tons/ha), an increase by 27.6% compared to the non-silicon treatment. Therefore, the use of silicon supplements is recommended to reduce the harmful effects of water shortage on the growth and development of Mondo grass.

    References

    Ahmed M., Asif M. & Hassan F.(2014).Augmenting drought tolerance in sorghum by silicon nutrition. Acta Physiol Plant. 36: 473-483.

    Amin M., Ahmad R., Basra S.M.A. & Murtaza G. (2014). Silicon induced improvement in morpho-physiological traits of maize (Zea maysL.) under water defcit. Pak J Agric Sci 51(1): 187-196.

    Ahmad S.T. & Haddad R. (2011). Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech J Genet Plant Breed. 47: 17-27.

    Bianchini H.C. & Marques D.J. (2019). Tolerance to hydric stress on cultivars of silicon-fertilized corn crops: absorption and water-use efciency. Biosci J. 35(2): 527-539.

    Bùi Thị Cúc, Bùi Thị Thu Hương & Đồng Huy Giới (2017). Nghiên cứu đặc điểm hình thái, giải phẫu liên quan đến khả năng chịu hạn của một số giống lily nhập nội. Tạp chí Nông nghiệp và Phát triển nông thôn. 1+2: 58-63.

    Correia J.M., Coelho D. & David M.M. (2001). Response to seasonal drought in three cultivars of Ceratonia siliqua: leaf growth and water relations. Tree Physiology. 21(10): 645-653.

    Feihu L., Qiyuan L., Xueni L., Haiquan H. & Shouwen Z. (2005). Morphological, anatomical, and physiological asessment of ramie (Boemeria nivea(L.) Gaud) tolerance to soil drought. Genetic Resources and Crop Evaluation. 52(5): 497-506.

    Fleck A.T., Schulze S., Hinrichs M., Specht A., Waßmann F., Schreiber L. & Schenk M.K. (2015). Silicon promotes exodermal casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLOS ONE. 10(9). doi: 10.1371/journal.pone.0138555.

    Gupta B. & Huang B. (2014).Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. pp. 701596-701518.

    Gong H.J.&Chen K.M. (2012).The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves infield drought conditions. Acta Physiologiae Plantarum.34(4): 1589-1594.

    Haak D.C., Fukao T., Grene R., Hua Z., Ivanov R., Perrella G. & Li S. (2017). Multilevel regulation of abiotic stress responses in plants. Front Plant Sci. 8(1): 1564.

    Hameed A., Sheikh M.A., Jamil A. & Basra S.M.A. (2013). Seed priming with sodium silicate enhances seed germination and seedling growth in wheat (Triticum aestivumL.) under water deficit stress induced by polyethylene glycol. Pak J Life Soc Sci. 11: 19-24.

    Javot H. & Maurel C. (2002). The role of aquaporins in root water uptake. Ann. Bot. 90(3): 301-313.

    Ming D.F., Pei F., Naeem M.S., Gong H.J. & Zhou W.J.(2012). Silicon alleviates peg-induced water-defcit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci. 198(1): 14-26.

    Ma J.F. & Yamaji N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science. 11(8): 392-397.

    Mateos-Naranjo E., Galle A., Florez-Sarasa I., Perdomo J.A., Galmés J., Ribas-Carbó M. & Flexas J. (2015). Assessment of the role of silicon in the Cu- tolerance of the C4 grass Spartina densifora. J Plant Physiol. 178(1): 74-83.

    Nguyễn Nghĩa Thìn (2007). Các phương pháp nghiên cứu thực vật. Nhà xuất bản Đại học Quốc gia.

    Sonobe K., Hattori T., An P., Tsuji W., Eneji A.E., Kobayashi S., Kawamura Y., Tanaka K. & Inanaga S. (2011). Effect of silicon application on sorghum root responses to water stress. J Plant Nutr. 34: 71-82.

    Shao H.B., Chu L.Y., Jaleel C.A., Manivannan P., Panneerselvam R. & Shao M.A. (2009). Understanding water defcit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol. 29(2): 131-151.

    Shi Y., Zhang Y., Han W., Feng R., Hu Y., Guo J. & Gong H. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicumL. Front Plant Sci. 7(196): 1-15.

    Trần Công Khánh (1981). Thực tập hình thái giải phẫu thực vật. Nhà xuất bản Đại học và Trung học chuyên nghiệp.

    Verma K.K., Singh R.K., Song Q.Q., Singh P., Zhang B.Q., Song X.P., Chen G.L. & Li Y.R. (2019). Silicon alleviates drought stress of sugarcane plants by improving antioxidant responses. Biomed J Sci Tech Res. 17(1): 12580-12586.

    Vatansever R., Ozyigit II., Filiz E. & Gozukara N. (2017).Genomewide exploration of silicon (Si) transporter genes, Lsi1 and Lsi2 in plants insights into Si-accumulation status/capacity of plants. BioMetals. 30(1): 185-200.

    Zhang J. (2003). The preliminary study on lilyturfs. Pratacultural Sci. 20: 69-70.

    Zhang J.H., Han H.Y., Lei Y.K., Yang W.B., Li Y.H. & Yang D.F. (2012). Correlations between distribution characteristics of Atermisia ordosicaroot system and soil moisture under different fixation stage of sand dunes. J. Southwest Forest. Univ. 6: 1-5.