NGHIÊN CỨU ẢNH HƯỞNG CỦA ĐÈN LED ĐẾN SINH TRƯỞNG, HÀM LƯỢNG SẮC TỐ VÀ KHẢ NĂNG THÍCH ỨNG CỦA MỘT SỐ CHỦNG TẢO XOẮN ARTHROSPIRA PLATENSISTRONG MÙA ĐÔNG Ở MIỀN BẮC VIỆT NAM

Ngày nhận bài: 13-06-2020

Ngày duyệt đăng: 13-07-2020

DOI:

Lượt xem

0

Download

0

Chuyên mục:

KỸ THUẬT VÀ CÔNG NGHỆ

Cách trích dẫn:

Bách, N., Khuê, N., Miện, P., Tuấn, K., & Hiền, N. (2024). NGHIÊN CỨU ẢNH HƯỞNG CỦA ĐÈN LED ĐẾN SINH TRƯỞNG, HÀM LƯỢNG SẮC TỐ VÀ KHẢ NĂNG THÍCH ỨNG CỦA MỘT SỐ CHỦNG TẢO XOẮN ARTHROSPIRA PLATENSISTRONG MÙA ĐÔNG Ở MIỀN BẮC VIỆT NAM. Tạp Chí Khoa học Nông nghiệp Việt Nam, 18(8), 637–648. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/693

NGHIÊN CỨU ẢNH HƯỞNG CỦA ĐÈN LED ĐẾN SINH TRƯỞNG, HÀM LƯỢNG SẮC TỐ VÀ KHẢ NĂNG THÍCH ỨNG CỦA MỘT SỐ CHỦNG TẢO XOẮN ARTHROSPIRA PLATENSISTRONG MÙA ĐÔNG Ở MIỀN BẮC VIỆT NAM

Nguyễn Đức Bách (*) 1 , Nguyễn Phan Khuê 2, 1 , Phí Thị Cẩm Miện 1 , Kim Anh Tuấn 1 , Nguyễn Thị Hiền 1

  • 1 Khoa Công nghệ sinh học, Học viện Nông nghiệp Việt Nam
  • 2 Trung tâm R và D Chiếu sáng, Công ty cổ phần Bóng đèn phích nước Rạng Đông
  • Từ khóa

    Arthrospira platensis, tảo xoắn Spirulina, đèn LED, miền Bắc, chlorophyll a, phycocyanin, carotenoid

    Tóm tắt


    Ánh sáng đèn LED đỏvàxanh với các tỉ lệ khác nhau ảnh hưởng đến tốc độ sinh trưởng, thời gian thế hệ, năng suất sinh khối và hàm lượng sắc tố chlorophyll a, carotenoid và phycocyanin của các chủng tảo xoắn Spirulina. Ánh sáng LED đỏ 660nm tác động tích cực đến sinh trưởng và tăng hàm lượng các sắc tố bao gồm chlorophyll avà phycocyanin. Ánh sáng LED xanh không phù hợp để nhân sinh khối nhưng có thể ngăn ngừa và loại bỏ động vật nguyên sinh. Bổ sung đèn LED đỏ hoặc tỉ lệ đỏ xanh (7:3) có tác dụng kíchthích tảo sinh trưởng trong mùa đông và kiểm soát được hiện tượng tạp nhiễm. Tấtcả 5chủng tảo xoắn Arthrospira platensisSp2, Sp6, Sp9, UTEX-1928 và NIES-46đều có khả năng thích ứng với mùa đông lạnh miền Bắc Việt Nam, trong đó chủng Sp9 có khả năng thích ứng tốt nhất với tốc độ sinh trưởng và năng suất sinh khối cao nhất phù hợp với miền Bắc Việt Nam.

    Tài liệu tham khảo

    Ahsan M., Mashuda P.T.C., Huntington M. & Hasan R. (2008). A review on culture, production and use of spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular No. 1034.

    Bachchhav M.B., Kulkarni M.V. & Ingale A.G. (2016). Enhanced phycocyanin production from Spirulina platensisusing light emitting diode. Journal of The Institution of Engineers (India): Series E. 98(1): 41-45.

    Castro G.F.P., Rizzo R.F., Passos T.S., Santos B.N.C., Dias J.R., Domingues K.G. & Araújo L. (2015). Biomass production by Arthrospira platensisunder different culture conditions. Food Science and Technology (Campinas). 35(1): 18-24.

    Silva A.F., Lourenço S.O. & Chaloub R.M. (2009). Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonassp. (Cryptophyceae). Aquatic Botany. 91(4): 291-297.

    Evmorfia K., Sara C.B., Giorgos M., Koen G., Dries V., Koenraad M., Finlay B. & Fenchel T. (2007). Enhanced phycocyanin and protein content of Arthrospira by applying neutral density and red light shading filters: a small‐scale pilot experiment. Journal of Chemical Technology and Biotechnology.94(6): 2047-2054.

    Finlay B. J. & Fenchel T. (1986). Photosensitivity in the ciliated protozoon Loxodes: Pigment granules, absorption and action spectra, blue light perception, and ecological significance1. Journal of Eukaryotic Microbiology. 33(4): 534 - 542.

    Herrera A., Napoleone A. & Hohlberg A. (1989). Recovery of c-phycocyanin from the cyanobacterium Spirulina maxima. Journal of Applied Phycology. 1: 325-331.

    John G.D., Yingchun G. & Qiang H. (2017). Microzooplanktonic grazers - A potentially devastating threat to the commercial success of microalgal mass culture. Algal Research. 27: 356-365.

    Kilimtzidi E., Giorgos Markou S.C.B, Koen G., Dries V. & Koenraad M. (2019). Enhanced phycocyanin and protein content of Arthrospiraby applying neutral density and red light shading filters: a small‐scale pilot experiment. Journal of Chemical Technology and Biotechnology. 94(6): 2047-2054.

    Kim Lệ Chân, Trần Sương Ngọc, Huỳnh Thị Ngọc Hiền & Trương Quốc Phú(2018). Ảnh hưởng của màu sắc ánh sáng lên sự phát triển của tảo Spirulina platensis. Tạp chí Khoa học,Trường Đại học Cần Thơ. 54(9B): 75-81.

    Lichtenthaler H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382.

    MarkouG. (2014). Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensiscultivated in semi-continuous mode. Applied Biochemistry and Biotechnology. 172(5): 2758-2768.

    Melinda J.G., Rob Van Hille C.G. & Susan T.L.H. (2011). Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods. 85(2): 119-123.

    Menegotto A.L.C., Luciane C. & Cristiane C.E. (2016). Potential application of microalga Spirulina platensisas a protein source. Journal of the Science of Food and Agriculture. 97(3):724-732.

    Miguel O. (1990). Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis. Journal of Applied Phycology. 2: 97-104.

    Park W.S., Kim H.J., Li M., Lim D.H., Kim J., Kwak J.J., Kang C.M., Ferruzzi M.G. & Ahn M.J. (2018). Two Classes of Pigments, Carotenoids and C-Phycocyanin, in Spirulina powder and their antioxidant activities. Molecules. 23(8):2065.

    Prates D.D., Radmann E.M., Duarte J.H., Morais M.G. & Costa J.A.V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology. 256: 38-43.

    Raqiba H.S.G. (2019). Light Emitting Diode (LED) Illumination for enhanced growth and cellular composition in three microalgae. Advances in Microbiology Research. 3(1): 1-6.

    Roh H.J., Kim A., Kang G. & Kim D.H. (2018). Blue light-emitting diode light at 405 and 465 nm can inhibit a protozoan infection in olive flounder, Paralichthys olivaceus. Aquaculture. 493. 10.1016/j.aquaculture.2018.04.045.

    Thaweedet C., Siripen T. & Richard L. (2012). Effect of light quality on biomass and pigment production in photoautotrophic and mixotrophic cultures of Spirulina platensis. Journal of Agricultural Technology. 8(5): 1593-1604.

    Tian F., Buso D., Wang T., Lopes M., Niangoran U. & Zissis G. (2018). Effect of red and blue LEDs on the production of phycocyanin by Spirulina PlatensisBased on photosynthetically active radiation. Journal of Science and Technology in Lighting. 41(0): 148-152.

    Vonshak A. (1997). Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology. Taylor & Francis.

    Vonshak A. (1994). Effect of light and temperature on the photosynthetic activity of the cyanobacterium Spirulina platensis. Biomass and Bioenergy.6(5): 399-403.

    Vonshak A. (2006). Photoadaptation, photoinhibition and productivity in the blue-green alga, Spirulina platensis grown outdoors. Plant Cell and Environment. 15(6): 613-616.

    Võ Hồng Trung, Nguyễn Thị Bích Ngọc, Trần Huỳnh Phong & Nguyễn Thị Hồng Phúc (2017). Ảnh hưởng của chất lượng ánh sáng lên sự tăng trưởng, hàm lượng carbohydrate và protein ở Spirulinasp. Tạp chí Khoa học,Trường Đại học Sư phạm thành phố Hồ Chí Minh. 14(12): 117-126.

    Wang C.Y., Fu C.C. & Liu Y.C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis.Biochemical Engineering Journal. 37(1): 21-25.

    Yoshikawa O. (2008). Single-laboratory validation of a method for the determination of c-phycocyanin and allophycocyanin in Spirulina(Arthrospira) supplements and raw materials by spectrophotometry. Journal of AOAC International. 91(3): 524‐529.

    Zarrouk C. (1966). Contribution a l’etude d’une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima(Setchell et Gardner) Geitler. PhD thesis, University of Paris, France.