Ngày nhận bài: 08-05-2015
Ngày duyệt đăng: 25-08-2015
DOI:
Lượt xem
Download
Cách trích dẫn:
DIFFERENTIATIONOF TWO CLARIAS SPECIES (Clarias macrocephalusAND C. gariepinus) AND THEIR HYBRIDS BASED ON PCR-RFLP ANALYSIS
Tóm tắt
Catfish hybrids (Clarias macrocephalus x C. gariepinus) have been popularly cultured in Viet Nam and have possibly escaped to the wild. Identification of hybrid individuals has become important in fishery resource management and aquaculture, but hybrid differentiation based on morphology is highly uncertain. This study employed PCR-RFLP method using a mitochondrial (cytochrome Coxidase subunit I, COI) marker and a nuclear (rhodopsin, rho) marker to differentiate hybrids from the parental species. Two genes were sequenced from 12 samples of two species (6 of each species) and 3 samples of the culutred hybrid. Sequences of the two species were aligned to find species-specific restriction enzymes. Restriction enzymes of SpeI and XcmI were selected to digest at species-specific sites of COI and rho genes, respectively. Results confirmed that C. macrocephalus is maternal lineage of the cultured hybrid. Sequence chromatogram and fragments after XcmI digestion of rho gene of the hybrid revealed intermediate patterns between two parental species. Therefore, PCR-RFLP analysis of COI and rho genes is an effective and accurate method for identification of catfish hybrid individuals.
Tài liệu tham khảo
Bartley, D. M., K. Rana, and A. J. Immink (2000). The use of inter-specific hybrids in aquaculture and fisheries. Reviews in Fish Biology and Fisheries, 10(3): 325 - 337.
Bernardo, J. (1996). The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. American Journal of Zoology, 36: 216 - 236.
Chen, W. J., C. Bonillo, and G. Lecointre (2003). Repeatability of clades as a criterion of reliability: A case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics and Evolution, 26(2): 262 - 288.
Chen, W.-J., G. Ortí, and A. Meyer (2004). Novel evolutionary relationship among four fish model systems. Trends in genetics : TIG, 20(9): 424 - 31.
Chen, W.-J., M. Miya, K. Saitoh, and R. L. Mayden (2008). Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene, 423(2): 125 - 34.
Collins, R. A., K. F. Armstrong, R. Meier, Y. Yi, S. D. J. Brown, R. H. Cruickshank, S. Keeling, and C. Johnston (2012). Barcoding and border biosecurity: Identifying cyprinid fishes in the aquarium trade. PLoS ONE 7. e28381.
Cucherousset, J., and J. D. Olden. (2011). Ecological Impacts of Non-native Freshwater Fishes. Fisheries, 36(5): 215 - 230.
Do Prado, F. D., D. T. Hashimoto, J. A. Senhorini, F. Foresti, and F. Porto-Foresti. (2012). Detection of hybrids and genetic introgression in wild stocks of two catfish species (Siluriformes: Pimelodidae): The impact of hatcheries in Brazil. Fisheries Research, 125: 300 - 305.
FAO (1997). FAO database on introduced aquatic species. FAO Database on Introduced Aquatic Species, FAO, Rome.
Fitzgibbon, J., A. Hope, S. J. Slobodyanyuk, J. Bellingham, J. K. Bowmaker, and D. M. Hunt. (1995). The rhodopsin-encoding gene of bony fish lacks introns. Gene, 164(2): 273 - 277.
Garte, S. J. (1993). Molecular Environmental Biology. Taylor & Francis.
Gozlan, R. E., J. R. Britton, I. Cowx, and G. H. Copp (2010). Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology, 76(4): 751 - 786.
Hashimoto, D. T., F. F. Mendonça, J. A. Senhorini, J. Bortolozzi, C. de Oliveira, F. Foresti, and F. Porto-Foresti (2010). Identification of hybrids between Neotropical fish Leporinus macrocephalus and Leporinus elongatus by PCR-RFLP and multiplex-PCR: Tools for genetic monitoring in aquaculture. Aquaculture 298(3 - 4):346 - 349.
Hashimoto, D. T., J. A. Senhorini, F. Foresti, P. Martinez, and F. Porto-Foresti (2014). Genetic Identification of F1 and Post-F1 Serrasalmid Juvenile Hybrids in Brazilian Aquaculture. Plos One, 9(3). e89902. doi:10.1371/journal.pone.0089902
Ivanova, N. V., T. S. Zemlak, R. H. Hanner, and P. D. N. Hebert (2007). Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7: 544 - 548.
Kochzius, M., C. Seidel, A. Antoniou, S. K. Botla, D. Campo, A. Cariani, E. G. Vazquez, J. Hauschild, C. Hervet, S. Hjörleifsdottir, G. Hreggvidsson, K. Kappel, M. Landi, A. Magoulas, V. Marteinsson, M. Nölte, S. Planes, F. Tinti, C. Turan, M. N. Venugopal, H. Weber, and D. Blohm (2010). Identifying fishes through DNA barcodes and microarrays. PLoS ONE, 5: 1 - 15.
Larmuseau, M. H. D., T. Huyse, K. Vancampenhout, J. K. J. Van Houdt, and F. A. M. Volckaert (2010). High molecular diversity in the rhodopsin gene in closely related goby fishes: A role for visual pigments in adaptive speciation? Molecular phylogenetics and evolution, 55(2): 689 - 98.
Leprieur, F., S. Brosse, E. Garcia-Berthou, T. Oberdorff, J. D. Olden, and C. R. Townsend (2009). Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes. Fish and Fisheries, 10: 88 - 97.
López, J. A., W.-J. Chen, and G. Ortí. (2004). Esociform Phylogeny. Copeia,3: 449 - 464
Na-Nakorn, U., W. Kamonrat, and T. Ngamsiri. 2004. Genetic diversity of walking catfish, Clarias macrocephalus, in Thailand and evidence of genetic introgression from introduced farmed C.gariepinus. Aquaculture, 240(1 - 4): 145 - 163.
Porto-Foresti, F., D. T. Hashimoto, F. D. Prado, J. A. Senhorini, and F. Foresti. (2013). Genetic markers for the identification of hybrids among catfish species of the family Pimelodidae. Journal of Applied Ichthyology, 29(3): 643 - 647.
Senanan, W., A. R. Kapuscinski, U. Na-Nakorn, and L. M. Miller. (2004). Genetic impacts of hybrid catfish farming (Clarias macrocephalus x C. gariepinus) on native catfish populations in central Thailand. Aquaculture, 235(1 - 4): 167 - 184.
Shen, X. X., D. Liang, Y. J. Feng, M. Y. Chen, and P. Zhang. (2013). A Versatile and Highly Efficient Toolkit Including 102 Nuclear Markers for Vertebrate Phylogenomics, Tested by Resolving the Higher Level Relationships of the Caudata. Molecular Biology and Evolution. Mol Biol Evol., 30(10): 2235 - 48.
Sittikraiwong, P. (1987). Karyotype of the hybrid between Clarias macrocephalus Gunther and Pangasius sutchi Fowler. M.Sc. Thesis. Fisheries Department Kasetsart University.
Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30: 2725 - 2729.
Teugels, G. G., M. Legendre, and H. Le Thanh (1998). Preliminary results on the morphological characterisation of natural populations and cultured strains of Clarias species (Siluriformes, Clariidae) from Viet Nam. The biological diversity and aquaculture of clariid and pangasiid catfishes in South-East Asia. Proceedings of the mid-term workshop of the “Catfish Asia Project.”, p. 27 - 30.
Teugels, G. G., C. Ozouf-costz, M. Legendre, and M. Parrent. (1992). A karyological analysis of the artificial hybridization between Clarias gariepinus (Burchell, 1822) and Heterobranchus longifilis Valenciennes, 1840 (Pisces; Clariidae). Journal of Fish Biology, 40(1): 81 - 86.
Vaini, J. O., A. B. Grisolia, F. D. do Prado, and F. Porto-Foresti. (2014). Genetic identification of interspecific hybrid of Neotropical catfish species (Pseudoplatystoma corruscans vs. Pseudoplatystoma reticulatum) in rivers of Mato Grosso do Sul State, Brazil. Neotropical Ichthyology, 12(3): 635 - 641.
Visoottiviseth, P., A. Sungpetch, and N. Pongthana. (1997). Karyotype of hybrid catfish (Clarias macrocephalus x C. gariepinus). Journal of science society of Thailand, 24: 57 - 63.
Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last, and P. D. N. Hebert. (2005). DNA barcoding Australia’s fish species. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 360: 1847 - 1857.
Zhang, L., T. J. Vision, and B. S. Gaut. (2002). Patterns of Nucleotide Substitution Among Simultaneously Duplicated Gene Pairs in Arabidopsis thaliana. Molecular Biology and Evolution, 19(9): 1464 - 1473.