Effectsof CarbonandNitrogenSources and Mineral Salts on the Mycelium Growth of Snow Mushroom Tremella fuciformisStrain Tre-1

Received: 09-06-2021

Accepted: 30-08-2021

DOI:

Views

2

Downloads

2

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Giang, N., Thao, N., Ha, T., & Trinh, N. (2024). Effectsof CarbonandNitrogenSources and Mineral Salts on the Mycelium Growth of Snow Mushroom Tremella fuciformisStrain Tre-1. Vietnam Journal of Agricultural Sciences, 19(11), 1522–1530. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/911

Effectsof CarbonandNitrogenSources and Mineral Salts on the Mycelium Growth of Snow Mushroom Tremella fuciformisStrain Tre-1

Nguyen Van Giang (*) 1 , Nguyen Thi Phuong Thao 2 , Tran Thu Ha 3 , Nguyen Duy Trinh 4

  • 1 Khoa Công nghệ sinh học, Học viện Nông nghiệp Việt Nam
  • 2 Học viện Nông nghiệp Việt Nam
  • 3 Trung tâm Nghiên cứu và Phát triển Nấm, Viện Di truyền Nông nghiệp
  • 4 Trung tâm NC và PT nấm, Viện Di truyền Nông nghiệp
  • Keywords

    Carbon and nitrogen sources, mineral salts, mycelium growth, snow mushroom(Tremella fuciformisI)

    Abstract


    Snow mushroom (Tremella fuciformis) is a high-value edible mushroom. Polysaccharide compounds from T. fuciformisexhibited various biological activities such as improving the immune system and antioxidant, anti-tumor, and anti-inflammatory activity. This study was carried out to investigate the effects of different carbon sources (glucose, fructose, lactose, maltose, sucrose) and nitrogen sources (yeast extract, peptone, NH4NO3, (NH4)2SO4, (NH4)2HPO4and NH4Cl) and mineral salts (MgSO4.7H2O, KH2PO4and ZnSO4) on the mycelium growth of the snow mushroom strain Tre-1. Snow mushroom Tre-1 was grown on PA medium supplemented with 20g/l of different carbon sources, including glucose, lactose, maltose, fructose, sucrose, to evaluate the effect of carbon source on the growth and development of mycelium. Similarly, to investigate the effect of nitrogen source on snow mushroom mycelia, experiments were carried out on PA medium supplemented with 20 g/l glucose and 1.0 g/l different nitrogen sources, including yeast extract, peptone, NH4NO3, (NH4)2SO4, (NH4)2HPO4and NH4Cl. The effect of glucose/peptone ratio and a mineral source on the growth of mycelia of Tre-1 mushroom was evaluated based on the experimental results of growing Tre-1 mycelia on PA medium containing 1 g/l of peptone added 15, 20, 25, 30, 35 and 40 g/l glucose respectively, and 0.25 g/l mineral salts MgSO4.7H2O, KH2PO4and ZnSO4. Results indicated that the optimal carbon and nitrogen sources for the mycelial growth of T. fuciformisstrain Tre-1 were glucose and peptone, respectively. The optimum glucose/peptone ratio was in the range of 20:1 to 25:1. MgSO4.7H2O was identified as the most effective source.

    References

    Bich Thuy Thi Nguyen, Nghien Xuan Ngo, Ve Van Le, Luyen Thi Nguyen, Ry Kana & Huy Duc Nguyen (2019). Optimal culture conditions for mycelial growth and fruiting body formation of Ling Zhi mushroom Ganoderma lucidumstrain GA3. Journal of Science,Technology and Engineering. 61(1): 62-67.

    Bich Thuy Thi Nguyen, Ve Van Le, Huyen Trang Thi Nguyen, Luyen Thi Nguyen, Thuy Trang Thi Tran & Nghien Xuan Ngo (2021). Nutritional requirements for the enhanced mycelial growth and yield performance of Trametes versicolor. Journal of Applied Biology and Biotechnology. 9(1): 1-7.

    Chang H.U, Lee C., Choi S.W. & Yun J.W. (2008). Liquid culture condition of Tremella fuciformismycelia. Journal of Mushroom Science and Production. 6(1): 27-31.

    Chang H.Y. (1997). Artificial cultivation of Tremella fuciformisBerk. using associated fungus, Hypoxylonsp. [dissertation]. Chuncheon, Korea: Kangwon National University.

    Chen B. (2010). Optimization of extraction of Tremella fuciformispolysaccharides and its antioxidant and antitumour activities in vitro. Carbohydrate Polymers. 81(2): 420-424.

    Đoàn Văn Vệ & Trịnh Tam Kiệt (2008). Nghiên cứu thành phần loài nấm ngân nhĩ Tremella của Việt Nam. Tạp chí Di truyền học và Ứng dụng. 4: 52-55

    Dong C.H. & Yao Y.J. (2005). Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. Journal of Applied Microbiology. 99: 483-92.

    El-Nour H.H.A. & Ibraheim A.M. (2021). Effect of some Organic Applications on Biological Efficiency and Productivity of Mushroom (Pleurotus columbines) Grown under Uncontrolled Conditions. Journal of Plant Production. 12(5): 495-503.

    Gusman J.K., Lin C.Y. & Shih Y.C. (2014). The Optimum Submerged Culture Condition of the Culinary-Medicinal White Jelly. International Journal of Medicinal Mushrooms. 6(3): 293-302.

    Ha Thi Hoa& WangC.L. (2015). The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology. 43(1): 14-23.

    Hou L., Chen Y., Ma C., Liu J., Chen L. & Maa, A. (2011). Effects of environmental factors on dimorphic transition of the jelly mushroom Tremella fuciformis. Mycologie. 32(4): 421-428.

    Jo W.S., Cho Y.J., Cho D.H., Park S.D., Yoo Y.B. & Seok S.J. (2009). Culture conditions for the mycelial growth of Ganoderma applanatum. Mycobiology. 37: 94-102.

    Jo W.S., Kang M.J., Choi S.Y., Yoo Y.B., Seok S.J. & Jung H.Y. (2010). Culture conditions for mycelial growth of Coriolus versicolor. Mycobiology. 38: 195-202.

    Jo W.S., Kim D.G., Seok S.J., Jung H.Y. & ParkS.C. (2014). The culture conditions for the mycelial growth of Auricularia auricula-judae. Journal of Mushrooms. 12(2): 88-95.

    Jo W.S., Rew Y.H., Choi S.G., Seo G.S., Sung J.M. & Uhm J.Y. (2006). The Culture Conditions for the Mycelial Growth of Phellinusspp. The Korean Journal of Mycology. 34(4): 200-205.

    Kalač P. (2010). Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chemistry. 122(1): 2-15.

    Kim S.B., Kim S.H., Lee K.R., Shim J.O., Lee M.W., Shim M.J., Lee U.Y. & Lee T.S. (2005). The optimal culture conditions for the mycelial growth of Oudemansiella radicata. Mycobiology. 33(4): 230-234.

    Lee E.J, Park H.S., Lee C.J., Kong W.S. & Koo C.D. (2019). Suitable Conditions for Mycelial Culture of Tremella fuciformis. The Korean Journal of Mycology. 47: 1-12.

    Lee J., Ha S.J., Lee H.J., Kim M.J., Kim J.H., Kim Y.T., Song K.M., Kim Y.J., Kim H.K. & Jung S.K. (2016). Protective effect of Tremella fuciformisBerk extract on LPS-induced acute inflammation via inhibition of the NF-KB and MAPK pathways. Food & Function. 7(7): 3263-3272.

    Letti L.A., Vítola F.M., Pereira G.V., Karp S.G., Medeiros A.B., Costa E.S., Lucas B. & Calos R.S.(2018). Solid-state fermentation for the production of mushrooms. Current Developments in Biotechnology and Bioengineering. pp. 285-318.

    Li Y., Chen J., Lai P., Tang B. & Wu L. (2020). Influence of drying methods on the physicochemical properties and nutritional composition of instant Tremella fuciformis. Food Science and Technology. 40(3): 741-748.

    Liu F., Xiang M., Guo Y., Wu X., Lu G., Yang Y. Xingzhong LiuX., Chen S., Zhang G. & Shi W. (2018). Culture conditions and nutrition requirements for the mycelial growth of Isaria farinosa(Hypocreales: Cordycipitaceae) and the altitude effect on its growth and metabolome. Scientific Report. 8(1): 1-15.

    Ma X., Yang M., He Y., Zhai C. & Li C. (2021). A review on the production, structure, bioactivities and applications of Tremellapolysaccharides. International Journal of Immunopathology and Pharmacology. 35: 1-14.

    Mallikarjuna S.E., Ranjini A., Haware D.J., Vijayalakshmi M.R., Shashirekha M.N. & Rajarathnam S. (2013). Mineral Composition of Four Edible Mushrooms. Journal of Chemistry. pp. 1-5.

    Miles P.G. & Chang S.T. (1997). Mushroom biology: Concise basics and current developments. In: Miles, PG, editor. Mushroom Biology: Concise Basics and Current Developments. Singapore: World Scientific Publishing Company. p. 41.

    Nguyễn Văn Giang, Nguyễn Thị Bích Thùy, Vũ Thị Khánh Linh, Nguyễn Duy Trình & Trần Thu Hà (2021). Ảnh hưởng của điều kiện nuôi cấy đến sinh trưởng hệ sợi của nấm Phellinus linteus. Tạp chí Khoa học và Công nghệ Việt Nam. 63(2): 39-43.

    Schmitt J.A., Meisch H.U. & Reinle W. (1977). Heavy metals in higher fungi, II, manganese and iron. Zeitschri fur Naturforschung C. 32(9-10): 712-723.

    Trần Thị Phú (2018). Nghiên cứu thành phần loài nấm lớn thuộc ngành Myxocota, Ascomycota, Basidiomycota ở núi Ngọc Linh, tỉnh Quảng Nam. Luận án tiến sĩ Thực vật học. Học viện Khoa học và Công nghệ. 266tr.

    Wen L., Gao Q., Ma C.W., Ge Y., You L., Liu R.H., Fu X. & Liu D. (2016). Effect of polysaccharides from Tremella fuciformison UV-induced photoaging. Journal of Functional Foods. 20: 400-410.

    Wu Y.J., Wei Z.X., Zhang F.M., Linhardt R.J., Sun P.L. & Zhang A.Q. (2019). Structure, bioactivities and applications of the polysaccharides from Tremella fuciformismushroom: a review. International Journal of Biological Macromolecules. 121: 1005-1010.

    Yang R., Jin Z., Shen T., Pu L. & Li H. (2018). Tremella fuciformispolysaccharides attenuate oxidative stress and inflammation in macrophages through miR-155. Analytical Cellular Pathology. pp. 8316-8324.

    Zhao X., Hu Y., Wang D., Guo L., Yang S., Fan Y., Zhao B., WangY. & AbulaS. (2011). Optimization of sulfated modification conditions of Tremellapolysaccharide and effects of modifiers on cellular infectivity of NDV. International Journal of Biological Macromolecules. 49(1): 44-49.

    Zhou Y., Chen X., Yi R., Li G., Sun P., Qian Y. & Zhao X. (2018). Immunomodulatory effect of Tremellapolysaccharides against cyclophosphamide - Induced immunosuppression in mice. Molecules. 23(2): 239.