Effects of Supplementation of Lactobacilus rhamnosus and Saccharomyces cerevisiaeCell Walls on Performance, Meat Quality and Benefit of Growing-fattening Pig

Received: 28-06-2021

Accepted: 27-07-2021

DOI:

Views

2

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Hiep, T., Dang, P., Hoang, N., & Thang, C. (2024). Effects of Supplementation of Lactobacilus rhamnosus and Saccharomyces cerevisiaeCell Walls on Performance, Meat Quality and Benefit of Growing-fattening Pig. Vietnam Journal of Agricultural Sciences, 19(11), 1462–1470. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/906

Effects of Supplementation of Lactobacilus rhamnosus and Saccharomyces cerevisiaeCell Walls on Performance, Meat Quality and Benefit of Growing-fattening Pig

Tran Hiep (*) 1 , Pham Kim Dang 1 , Nguyen Xuan Hoang 2 , Chu Manh Thang 3

  • 1 Học viện Nông nghiệp Việt Nam
  • 2 Viện Thực phẩm chức năng (VIDS)
  • 3 Viện Chăn nuôi - Thụy Phương, Bắc Từ Liêm, Hà Nội
  • Keywords

    Probitotic cell wall, performance, meat quality, growing - fattening pig

    Abstract


    The experiment aimed to to evaluate the effect of Lactobacilus rhamnosus and Saccharomyces cerevisiaecell walls (probiotic cell wall mixture) supplement on growth performance, meat quality and feed efficiency of growing - fattening pigs. Total 84 weaning pigs (PiDu ×LY) (6.6 ± 1.45 kg) were used in an experiment with four treatments (21 animals/treatment, devided in 3 pens with 7 animals each). The experimental animals were fed the basal diet and supplemented with 0%; 0.01%, 0.03%, 0.06% probiotic cell wall mixture, conresponding to negative control group (ĐC) and experimental groups (IV0.01, IV0.03, IV0.06), respectively. Results showed that, the probiotic cell wall mixture did not affect the intake but improved growth rate (ADG) and feed efficiency (FCR), i.e increased ADG by 3.1% to 6.9% and reduced FCR by 2.65% to 7.75%. Supplement of probiotic cell wall mixture reduced feed cost per kg ADG by 2% to 5% but did not affect meat quality. As a result, probiotic cell wall miture should be provided at 0.03% in pig diet.

    References

    ARC (Agricultural Research Council) (1981). The Nutrient Requirement of Pigs. Commonwealth Agricultural Bureaux, Slough, UK.

    Bajagai Y.S., Klieve A.V., Dart P.J. & Bryden W.L. (2016). Probiotics in animal nutrition - Production, impact and regulation. In: Makkar HPS, editor. FAO animal production and health paper. 89p.

    Barton Gate P., Warriss P.D., Brown S.N. & Lambooij B. (1995). Methods of improving pig welfare and meat quality by reducing stress and discomfort before slaughter-methods of assessing meat quality. Proceeding of the EU-Seminar, Mariensee. pp. 22-23.

    Bộ Khoa học và Công nghệ (2007). TCVN 4328-1:2007. Thức ăn chăn nuôi - xác định hàm lượng nitơ và tính hàm lượng protein thô.

    Bộ Khoa học và Công nghệ (2007). TCVN 1537:2007. Thức ăn chăn nuôi - xác định hàm lượng canxi.

    Bộ Khoa học và Công nghệ (2008). TCVN 1525:2001. Thức ăn chăn nuôi - xác định hàm lượng phospho.

    Bộ Khoa học và Công nghệ (2008). TCVN 4326:2001. Thức ăn chăn nuôi - xác định độ ẩm và hàm lượng chất bay hơi khác.

    Bộ Khoa học và Công nghệ (2012). TCVN 8764:2012. Thức ăn chăn nuôi - phương pháp xác định hàm lượng axit amin.

    Brown G.D. & Gordon S. (2003). Fungal -glucans and mammalian immunity. Immunity. 19: 311-315.

    Chethan G.E., Garkhal J., Sircar S., Malik Y.P.S., Mukherjee R., Sahoo N.R., Agarwal R.K. & De U.K. (2017). Immunomodulatory potential of -glucan as supportive treatment in porcine rotavirus enteritis. Veterinary Immunology and Immunopathology. 191: 36-43.

    Clinquart A. (2004). Instruction pour la mesure de la couleur de la viande de porc par spectrocolorimetrie. Département des Sciences des Denrees Alientaires, Faculté de Médecine Véterinaire, Université de Liège. pp. 1-7.

    Jonsson E. & Conway P. (1992). Probiotics for pigs. Chapman & Hall, Chapter. 11: 259-316.

    Jouany J..P, Yiannikouris A. & Bertin G. (2005). The chemical bonds between mycotoxins and cell wall components of Saccharomyces cerevisiae have been identified. Arch. Zootech. 8: 26-50.

    Krüger D. & Werf M. (2019). Benefits of Application of Yeast Cell Walls in Animal Husbandry. Ohly Application Note, 1-4.

    Lengerken G.V. & Pfeiffer H. (1987). Stand und Entwicklungstendezen der Anwendung von Methoden zur Erkennung der Stressempfindlichkeit und Fleischqualitaet beim Schwein, Inter-Symp. Zur Schweinezucht, Leipzig. pp. 1972-1979.

    Li J. & Kim I.H. (2014). Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs. Animal Science Journal. 85(6): 698-705.

    Li J., Li D.F., Xing J.J., Cheng Z.B. & Lai C.H. (2006). Effects of -glucan extracted from Saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. Journal of Animal Science. 84(9): 2374-2381.

    Li J., Xing J., Li D., Xu W., Zhao L., Sanqioa L.V. & Huang D. (2005). Effects of -glucan extracted from Saccharomyces cerevisiae on humoral and cellular immunity in weaned piglets. Archives of Animal Nutrition. 59(5): 303-312.

    Li J., Li D.F., Xing J.J., Cheng Z.B. & Lai C.H. (2006). Effects of -glucan extracted from Saccharomyces cerevisiaeon growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia colilipopolysaccharide. J. Anim. Sci. 84: 2374-2381.

    Liu G., Yu L., Martínez Y., Ren W., Ni H., Abdullah Al-Dhabi N., Duraipandiyan V. & Yin Y. (2017). Dietary Saccharomyces cerevisiaeCell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets. Hindawi Oxidative Medicine and Cellular Longevity Volume, Article ID 3967439. https://doi.org/10.1155/2017/3967439.

    Luna U.V., Caramori Júnior J.G., Corrêa G.S.S., Kiefer C., Souza M.A., Vieites F.M., Cruz R.A.S. & Assis S.D. (2015). Mannan oligosaccharides and -glucan in diets for weaned piglets. Arq. Bras. Med. Vet. Zootec. 67: 591-599.

    Magowan E., McCann M.E.E. (2009). The effect of sire line breed on the lifetime performance of slaughter generation pigs. Agri-food and Biosciences Institute, Afbini. Gov. UK.

    Ministère des classes moyennes et de l’agriculture de Belgique (1999). Arrêté ministériel relatif au classement des carcasses de porcs.Retrieved from https://www.etaamb.be/fr/arrete-ministeriel-du-03-mai-1999_n1999016173.html on March 12, 2020.

    National Research Council (2012). Nutrient Requirements of Swine: Eleventh Revised Edition. The National Academies Press, Washington, DC. https://doi.org/10.17226/13298.

    Pornanek P. & Phoemchalard C. (2020). Effects on growth performance, hematology, immune responses, intestinal histomorphology, carcass traits and meat quality in growing pigs of supplementing their diet with the yeast-rich residue from industrial production of ethanol from molasses. Livestock Research for Rural Development. 32(4).

    Rosen G.D. (2006). Holo-analysis of the efficacy of Bio-Mos® in pig nutrition. Animal Sci. 82: 683-689.

    Shetty P.H. & Jespersen L. (2006). Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Tech. 17: 48-55.

    Spring P., Wenk C., Connolly A. & Kiers A. (2015). A review of 733 published trials on BioMOS, a mannan oligosaccharide, and Actigen, a second generation mannose rich fraction, on farm and companion animals. J. Appl. Anim. Nutr. 3: 1-11.

    Van Laack R.L. & Kauffman R.N. (1999). Glycolytic potential of red, soft, exudative pork longissimus muscle. J. Anim. Sci. 77:2971-2973.

    Vetvicka V. & Oliveira C. (2014). (1-3)(1-6)-D-glucans modulate immune status in pigs: potential importance for efficiency of commercial farming. Ann Transl Med. 2(2): 1-6.

    Vetvicka V., Vannucci L. & Sima P. (2014). The effects of -glucan on pig growth and immunity. The Open Biochemistry Journal. 8(1): 89-93.

    Wang H , Chen G , Li X , Zheng F , Zeng X (2020). Yeast β-glucan, a potential prebiotic, showed a similar probiotic activity to inulin. Food Funct. 11(12):10386-10396.

    White L.A., Newman M.C., Cromwell G. & Lindemann M. (2002). Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. J. Anim. Sci., 80: 2619-2628.

    Yirga H. (2015). The use of probiotics in animal nutrition. J. Prob. Health. 3: 132.