DOI:
Views
Downloads
How to Cite:
Investigation and Selection of Indigenous Plants for Potential Treatment of Soil Contaminated with Chromiumin Long Khanh City, Dong Nai Province
Keywords
Solanum nigrumL., phytoremediation, heavy metal, chromium, native plants, Cr polluted soil
Abstract
The purpose of this studywas to focuson screening native plants capable of absorbing heavy metal chromium (Cr)to treat contaminated soil. By field investigation method combined with a greenhouse experiment to determine growth capacity, critical points, TF and BF coefficient, 48 plant species with their outer morphology specific to heavy metal hyper-accumulator were collected. After examining scientific names, making a checklist of plant species, the results showed that there were 16 orders, 21 families, 37 genera capable of accumulating heavy metals. Among them, 4 plant speciesweresurvived in Cr contaminated soil from 150- 350mg/kg dried soil concluding: (1) Cyperus rotundusL., (2) Cynodon dactylon(L) Pers., (3) Amaranthus spinosusL., (4) Solanum nigrumL. in which Solanum nigrumL. is dominant in terms of both biomass andthe transportas well asbioaccumulation coefficient. Under normal farming conditions and soil contaminated with Cr concentration of 150- 350 mg/kg, Solanum nigrumL.hasgrownwell and attainedthe highest Cr treatment efficiency in contaminated soil from 150- 250 mg/kg dried soil.
References
BakerA.J.M.&Brooks R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry.Biorecovery.1: 811-826.
BakerA.J.M., ReevesR.D.&HajarA.S.M.(1994). Heavy metal accumulation and tolerance in British population of the metallophyte ThlaspicaerulescensJ& C Presl (Brassicaceae).New Phytologist.127: 61-68.
Brooks R.R., Lee J. & Reeves R.D. (1977). Detection of nickliferous rocks by analysis of herbarium species of indicator plants. J. Geochem. Explor. 7: 49-77.
David E. Salt, Michael Blaylock, Nanda P.B.A. Kumar, Viatcheslav Dushenkov, Burt D. Ensley, Ilan Chet & Ilya Raskin(1995). Phytoremediation: A novel strategy for the removal of toxic metals from envrionmental using plants. Biotechnology. 3: 468-474.
Elizabeth Pilon-Smits & Marinus Pilon. (2002). Phytoremediation of Metals Using Transgenic Plants. Critical Reviews in Plant Sciences. 21(5): 439-456.
Hatice Daghan (2004).Phytoextraction ofHeavy Metal from Comtaminated Soils Using Genetically Modified Plants. Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Adana, Türkei.
Liu W., Shu W.S.&Lan C.Y. (2004). Viola baoshanensis a plant that hyperaccumulates cadmium.Chinese Science Bulletin. 1: 29-34.
Lombi E., ZhaoF.J., Dunham S.J. &McGrath S.P. (2001). Phytoremediation of Heavy Metal- Contaminated Soil.Journal of Environmental Quality.30:1919- 1926.
Ma L.Q.,KomarK.M.&Tu C. (2001). A fern that hyperaccumulates arsenic. Nature.pp. 409-579.
Nguyễn Nghĩa Thìn (2007). Các phương pháp nghiên cứu thực vật. Nhà xuất bảnĐại học Quốc gia Hà Nội.
SunT.H., ZhouQ.X.&Li P.J.(2001).Pollution Ecology.Beijing Science Press.
Tu C. & Ma, L. (2002).Effect of Arsenic concentrations and Forms on Arsenic Uptake by Hyperaccumulator Pteris vittataL. under hydroponic conditions. Environmental and Experiental Botany.50:243-251.
UBND Thị xã Long Khánh (2017). Quyết định số 324/UBND-NN, ngày 15 tháng 02 năm 2017 về việc hướng dẫn xử lý, khắc phục hàm lượng Cr cao trong đất tại Thị xã Long Khánh tỉnh Đồng Nai.
Vũ Văn Hợp &Nguyễn Thị Nhan (2005). Solanaceae Juss. 1789 - Họ Cà.Danh lục các loài thực vật Việt Nam.Nhà xuất bản Nông nghiệp, Hà Nội.tr. 27.
Wei S.H.&Zhou Q.X. (2004).Identification of weed species with hyperaccumulative characteristics of heavy metals, Prog. Natl. Sci.Aboveground biomass of S.nigrumg/plant-1.14(6): 495-503.