Scenarios for Reducing Enteric Methane Emission from Small Scale Dairy Production Farms in BaVi, HaNoi

Received: 31-03-2015

Accepted: 02-06-2015

DOI:

Views

2

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Phung, L., & Ngoan, L. D. (2024). Scenarios for Reducing Enteric Methane Emission from Small Scale Dairy Production Farms in BaVi, HaNoi. Vietnam Journal of Agricultural Sciences, 13(4), 543–550. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/192

Scenarios for Reducing Enteric Methane Emission from Small Scale Dairy Production Farms in BaVi, HaNoi

Le Dinh Phung (*) 1 , Le Duc Ngoan 1

  • 1 Khoa Chăn nuôi Thú y, Trường Đại học Nông Lâm Huế
  • Keywords

    Small scale Dairy production, feeding practices, enteric methane emission scenario

    Abstract


    An investigation was conducted to study the impact of alternative feeding practices on productivity and cattle enteric methane emissions of smallholder dairy systems in Ba Vi, Ha Noi. The study included two phases. During the first phase, data was collected in 30 farms in Ba Vi, Ha Noi through a semi-structured questionnaire. Average farm size (Mean± SD) was 0.85 ± 0.50 ha (15% crop area) and ~ 9 heads of pure and crossbred Holstein Friesian cattle. Herd structure consisted of 11, 25, 17 and 47% of calves, heifers, dry and lactating cows, respectively. Annual milk yield/farm was 28,655 ± 16,035 L (~US$ 20,059). Daily milk yield/cow was 14.1 ± 2.9 L. Using the feed supplied in each farm, the Ruminant model estimated yearly cattle enteric methane emission of 590 ± 359 kg per farm, 14.8 ± 8.99 tones CO2eq/farm and 0.52 ± 0.14 kg CO2 eq/L/milk. In the second phase, data was computed using a fixed representative farm to estimate responses to different feeding practices. Results showed that in comparison with Nepier grass (Pennissetum purpureum) and Guinea (Panicum maximum) or maize (Zea mays; 50% DM of the diet), the use of Ruzzi (Brachiaria ruziziensis) grass improved milk yield up to 14% and reduced enteric methane efficiency up to 9.4%. Potential increase of milk yield (5.3%) and decreased enteric methane efficiency up to 3.6% were predicted when maize silage substituted 50% of the elephant grass.

    References

    Boadi, D.A., K.M. Wittenberg and P.W. McCaughey (2002). Effect of grain supplementation on methane production of grazing steers using the sulfur hexaflouride tracer gas technique.Can. J. Anim. Sci., 82: 151-157.

    Beauchemin, K.A., M. Kreuzer, F. O’Mara and T.A. McAllister (2008). Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric., 48: 21-27.

    Chu Anh Dũng (2014). Chăn nuôi bò sữa ở Việt Nam - một số khó khăn về kỹ thuật và giải pháp. Hội thảo phát triển ngành sản xuất sữa và chăn nuôi bò sữa ở Việt Nam. Thành phố Hồ Chí Minh, 24/09/2014.

    Cottle, D.J., J.V. Nolan and S.G. Wiedemann (2011). Ruminant enteric methane mitigation: a review. Anim. Prod. Sci., 51: 491-514.

    Dewhurst, R.J (2012). Milk production from silage: comparison of grass, legume and maize silages and their mixtures. In: K. Kuoppala, M. Rinne & A. Vanhatalo (Eds.), Proc. of the XVI Int. Silage Conf. Hameenlinna, Finland, p. 134-135. University of Helsinki, MTT Agrifood Research Finland.

    FAO (2013). Mitigation or greenhouse gas emission in livestock production: A review of technical options for non- CO2 emission. Rome, Italy, p. 47-51.

    Hart, K.J., P.G. Martin, P.A. Foley, D.A. Kenny and T.M. Boland (2009). Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle. J. Anim. Sci., 87: 3342-3350.

    Herrero, M., P. Havlík, H. Valin, A. Notenbaert, M.C. Rufino, P.K. Thornton, M. Blümmel, F. Weiss, D. Grace and M. Obersteiner (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences, 110: 20888-20893.

    IPCC (2006). Guidelines for National Greenhouse Gas Inventories. Chapter 10: Emissions from Livestock and Manure Management, p. 10.29.

    IPCC (2007). Climate Change: Mitigation of Climate Change. IPCC Fourth Assessment Report (AR4). Available online: http://www.ipcc.ch/publications_and_data/ar4/wg3/en/contents.html.

    Kebreab, E., K.A. Johnson, S.L. Archibeque, D. Pape and T. Wirth (2008). Model for estimating enteric methane emissions from United States dairy and feedlot cattle. J. Anim Sci., 86: 2738-2748

    Kennedy, P.M and E. Charmley (2012). Methane yields from Brahman cattle fed tropical grasses and legumes. Anim. Prod. Sci., 52: 225-239.

    Knapp, J.R., G.L. Laur, P.A. Vadas, W.P. Weiss and J.M. Tricarico (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci., 97: 3231-3261.

    Lam, V., E. Wredle, N.V. Man and K. Svennersten-Sjaunja (2010). Smallholder dairy production in Southern Viet Nam: Production, management and milk quality problems. Afri. J. Agr. Res., 5(19): 2668-2675.

    McCaughey, W.P., K. Wittenberg and D. Corrigan (1999). Impact of pasture type on methane production by lactating beef cows. Can. J. Anim. Sci., 79: 221-226.

    Nishida, T., B. Eruden, K. Hosoda, H. Matsuyama, C. Xu and S. Shioya (2007). Digestibility, methane production and chewing activity of steers fed whole-crop round bale corn silage preserved at three maturities. Anim. Feed Sci. Technol., 135: 42-51.

    Quyết định số 3119/QĐ-BNN-KCN (2011). Phê duyệt đề án giảm phát thải khí nhà kính trong nông nghiệp, nông thôn đến năm 2020 của Bộ trưởng bộ Nông nghiệp và Phát triển nông thôn.

    Quyết định số 2139/QĐ-TTg (2011). Quyết định phê duyệt chiến lược quốc gia về biến đổi khí hậu của Thủ tướng Chính phủ.

    Tổng cục Thống kê (2013). Niên giám thống kê 2013. Nhà xuất bản Thống kê, Hà Nội.