Received: 21-12-2015
Accepted: 11-03-2016
DOI:
Views
Downloads
How to Cite:
Development of Colorimetric Sensor Using Gold Nanoparticle and Thymine-Single Stranded DNA for Rapid and Selective Detection of Mercury Ions in Water
Keywords
AuNPs-T-ssDNA complex, gold nanoparticle, mercury ions, T-ssDNA
Abstract
In this study, we have developeda colorimetric sensor for rapid and selective detection of mercury ions (Hg2 + ) in water by using the gold nanoparticle solution (AuNPs) and thymine-single stranded DNA (T-ssDNA). AuNPs is used as a sensing element based on their unique surface plasmon resonance propertiesand the T-ssDNA isself-assembled on gold nanoparticles to produce the AuNPs-T-ssDNA complex. Single-stranded DNA (T-ssDNA) could enhance the AuNPs against NaNO3-induced aggregation. However, the presence of mercury ions in the complex of AuNPs-T-ssDNA will reduce the stability of AuNPs due to the formation of Hg2 + mediated T-Hg2 + -T base pairs accompanied with the AuNPs color change from red to purple or even to dark blue. As a result, Hg2 + can be detected qualitatively or quantitatively by the naked eye or by UV-vis spectral measurement. The lowest detectable concentration of mercury ions by naked eye and by the UV-vis spectral measurement was 0.06µMand1nM, respectively.
References
Boening D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40: 1335-1351.
Lê Thị Mùi (2010). Xây dựng phương pháp xác định tổng Hg trong một số nguồn nước bề mặt và nước ngầm ở thành phố Đà Nẵng bằng phương pháp quang phổ hấp thụ phân tử UV-VIS. Tạp chí Khoa học và Công nghệ, Đại học Đà Nẵng, 4(39): 50-56.
Li C., M. Numata, M. Takeuchi and S. Shinkai (2005). A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angew. Chem., Int. Ed., 44(39): 6371-6374.
Li F., J. Zhang, X. Cao, L.Wang, D. Li, S. Song, B. C. Ye and C. Fan (2009). Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst., 134(7): 1355-1360.
Mutter J., J. Naumann, R. Schneider, H. Walach and B. Haley (2005). Mercury and autism: accelerating evidence. Neuroendocrinol. Lett., 26(5): 439-446.
Mirkin C. A., R. L. Letsinger, R. C. Mucic and J. J. Storhoff. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 382: 607-609.
Thaxton C. S., D. G. Georganopoulou and C. A.Mirkin (2006). Gold nanoparticle probes for the detection of nucleic acid targets. Clin. Chim. Acta., 363: 120-126.
Tolaymat T. M., A. M. El Badawy, G. Ash, K. G. Scheckel, T. P. Luxton and S. Makram (2010). An evidence-based environmental perspective of manufactured silver nanoparticles in syntheses and application: a systematic review and critical appraisal. Sci. Total Environ., 408: 999-1006.
Wood C.M., M. D.McDonald, P.Walker, M. Grosell, J. F. Barimo, R. C. Playle and P. J. Walsh (2004). Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the euryhaline gulf toadfish (Opsanus beta). Aquat. Toxicol., 70: 137-157.
Zheng W., M. Aschner and J. F. Ghersi-Egea (2003). Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicology and Applied Pharmacology, 192(1): 1-11.
Tanaka Y., S. Oda, H. Yamaguchi, Y. Kondo, C. Kojima and A. Ono (2007). 15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T Base pairs in a DNA duplex. J Am Chem Soc., 129(2): 244-245.
Zhao W., Brook M. A., Li Y. (2008). Design of gold nanoparticle-based colorimetric biosensing assays. ChemBiochem., 9(15): 2363-2371.