Expression of FIT Protein in Response to Different Iron(Fe) Levels and Oxidative Stress in Arabidopsis

Received: 21-08-2023

Accepted: 05-01-2024

DOI:

Views

3

Downloads

1

Section:

NÔNG HỌC

How to Cite:

Cham, L., Hang, V., & Hien, P. (2024). Expression of FIT Protein in Response to Different Iron(Fe) Levels and Oxidative Stress in Arabidopsis. Vietnam Journal of Agricultural Sciences, 22(1), 10–16. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1252

Expression of FIT Protein in Response to Different Iron(Fe) Levels and Oxidative Stress in Arabidopsis

Le Thi Tuyet Cham (*) 1 , Vu Thi Thuy Hang 2 , Phan Thi Thu Hien 3

  • 1 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • 2 Khoa Nông học, Học viện Nông nghiệp Việt nam
  • 3 Trường Đại học Sư phạm Hà Nội 2
  • Keywords

    Arabidopsis, FIT, FIT overexpression, protein quantification, Fe level, oxidative sress

    Abstract


    This study aimed to evaluate the expression of FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) at translational level under different iron (Fe) conditions prolonged 8 and 10 days associated with oxidative stress. This study assessed the expression of FIT at the translational level using the Western Blot technique in transgenic Arabidopsis plants overexpressing FIT for 8 and 10 days. FIT protein contents will be quantified using ImageJ software. The results showed that under Fe deficiency and excess conditions, the expression of FIT protein in 10-day-old plants was lower than in 8-day-old plants, in contrast to Fe-sufficient conditions. Under oxidative stress conditions, the expression of FIT increased except in the condition of Fe deficiency for 8 days. This result helps to complement the further study of the mechanism of FIT under conditions containing different Fe content.

    References

    Abramoff M.D., Magelhaes P.J. & Ram S.J. (2004). Image processing with ImageJ. Biophot Int.11: 36-42.

    Avila-Ospina L., Moison M., Yoshimoto K. &Masclaux-Daubresse C.(2014). Autophagy, plant senescence, and nutrient recycling. J. Exp. Bot. 65: 3799-3811.

    Brumbarova T., Le T.T.C. & Bauer P. (2016). Hydrogen Peroxyde Measurement in Arabidopsis Root Tissue Using Amplex Red. Bio-protocol. 6(21): e1999.

    Colangelo E.P. & Guerinot M.L. (2004). The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell. 16: 3400-3412.

    Cui Y., Chen C.L., Cui M., Zhou W.J., Wu H.L. & Ling H.Q. (2018). Four IVa 969 bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition 970 of Iron Uptake in Arabidopsis. Mol. Plant. 11: 1166-1183.

    Gratz R., Manishankar P., Ivanov R., Köster P., Mohr I., Trofimov K., Steinhorst L., Meiser J., Mai H.J., Drerup M., Arendt S., Holtkamp M., Karst U., Kudla J., Bauer P. & Brumbarova T. (2019). CIPK11-Dependent Phosphorylation Modulates FIT Activity to Promote Arabidopsis Iron Acquisition in Response to Calcium Signaling. Dev Cell. 48: 726-740.e10.

    Gratz R., Brumbarova T., Ivanov R., Trofimov K., Tünnermann L., Ochoa-Fernandez R., Blomeier T., Meiser J., Weidtkamp-Peters S., Zurbriggen M.D. & Bauer P. (2020). Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor fer-like iron deficiency-induced transcription factor. New Phytol. 225:250-267.

    Jakoby M., Wang H.Y., Reidt W., Weisshaar B. & Bauer P. (2004). FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett. 577: 528-534.

    Kanwar P., Baby D. & Bauer P. (2021). Interconnection of iron and osmotic stress 1024 signaling in plants: is FIT a regulatory hub to cross-connect abscisic acid 1025 responses? Plant Biol. 23: 31-38.

    Le C.T.T., Brumbarova T., Ivanov R., Stoof C., Weber E., Mohrbacher J., Fink-Straube C. & Bauer P. (2016). Zinc Finger Of Arabidopsis Thaliana12 (ZAT12) interacts with Fer-Like Iron Deficiency-Induced Transcription Factor (FIT) linking iron deficiency and oxydative stress responses. Plant Physiol. 170:540-557.

    Le C.T.T., Brumbarova T. &Bauer P. (2019). The interplay of ROS and iron signaling in plants. In: Panda SK, Yamamoto YY, eds, Redox homeostasis in plants, from signaling to stress tolerance. Cham: Springer. pp. 43-66.

    Li X., Huimin Z., Gang L. & Diqiu Y. (2016). Two bHLH Transcription Factors, bHLH34 and bHLH104, Regulate Iron Homeostasis in Arabidopsis thaliana. Plant Physiol.170: 2478-2493.

    Liang G., Zhang H., Li X., Ai Q. & Yu D. (2017). bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J. Exp. Bot. 68: 1743-1755.

    Lingam S., Mohrbacher J., Brumbarova T., Potuschak T., Fink-Straube C., Blondet E., Genschik P. & Bauer P. (2011). Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell. 23 :1815-29.

    Meiser J., Lingam S. & Bauer P. (2011). Posttranslational regulation of the iron deficiency basic helix‐loop‐helix transcription factor FIT is affected by iron and nitric oxyde. Plant Physiol. 157: 2154-2166.

    Ranieri A., Castagna A., Baldan B. & Soldatini G.F. (2001). Iron deficiency differently affects peroxydase isoforms in sunflower. J. Exp. Bot. 52: 25-35.

    Schwarz B. & Bauer P. (2020). FIT, a regulatory hub for iron deficiency and stress 1149 signaling in roots, and FIT-dependent and -independent gene signatures. J. Exp. Bot. 71: 1694-1705.

    Sun B., Jing Y., Chen K., Song L., Chen F. & Zhang L. (2007). Protective effect of nitric oxyde on iron deficiency-induced oxydative stress in maize (Zea mays). J. Plant Physiol. 164: 536-543.

    Tanaka A., Loe R. & Navasero S. (1966) Some mechanisms involved in the development of iron toxycity symptoms in the rice plant. Soil Sci. Plant Nutr. 12: 32-38.

    Wang H.Y., Klatte M., Jakoby M., Baumlein H., Weisshaar B. & Bauer P. (2007). Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta.226:897-908.

    Wang N., Cui Y., Liu Y., Fan H., Du J., Huang Z., Yuan Y., WuH. &Ling H.Q. (2013). Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol. Plant. 6: 503-513.

    Yuan Y.X., Zhang J., Wang D.W. & Ling H.Q. (2005). AtbHLH29 of Arabidopsis thalianais a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res. 15: 613-621.

    Yuan Y., Wu H., Wang N., Li J., Zhao W., Du J., Wang D. & Ling H.Q. (2008). FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res. 18: 385-397.

    Zhang J., Liu B., Li M., Feng D., Jin H., Wang P., Liu J., Xiong F., Wang J. & Wang H.B. (2015).The bHLH Transcription Factor bHLH104 Interacts with IAA-LEUCINE RESISTANT3 and Modulates Iron Homeostasis in Arabidopsis. The Plant Cell.27: 787-805.