In VitroAnalysis of Mitochondrial Unfolded Protein Response and Expression of HSPA9, HSPD1 and ATF5 using Cell Culture Models

Received: 17-04-2023

Accepted: 20-11-2023

DOI:

Views

1

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Nguyen, T., Kambe, Y., Giap, N., Ngan, M., Tra, V., Le, H., & Dao, B. (2024). In VitroAnalysis of Mitochondrial Unfolded Protein Response and Expression of HSPA9, HSPD1 and ATF5 using Cell Culture Models. Vietnam Journal of Agricultural Sciences, 21(11), 1404–1412. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1209

In VitroAnalysis of Mitochondrial Unfolded Protein Response and Expression of HSPA9, HSPD1 and ATF5 using Cell Culture Models

Thanh Trung Nguyen (*) 1, 2 , Yuki Kambe 3 , Nguyen Van Giap 1 , Mai Thi Ngan 1 , Vu Thi Thu Tra 1 , Huynh Thi My Le 1 , Bui Tran Anh Dao 1

  • 1 Khoa Thú y, Học viện Nông nghiệp Việt Nam
  • 2 Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
  • 3 Trường Đại học Kagoshima, Nhật Bản
  • Keywords

    CDDO, in vitro, Paraquat, UPRmtand mitochondrial stress

    Abstract


    This study aimed to assess the role of the mitochondrial chaperones signaling factors induced by the mammalian mitochondrial unfolded protein response. In vitromodels were used with the mRNA of Hspa9, Hspd1 and ATF5 gene measured upon mitochondrial stress via Paraquat and 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid in NIH3T3 and HEK293 cell lines by quantitative real time Polymerase Chain Reaction. The results demonstrated that NIH3T3 cells were not suitable as a readout for UPRmt induction in vitro. Further, it was found that the levels of the transcription factor ATF5 tended to be decreased, while the upregulation of the Hspa9 and Hspd1 was observed upon mitochondrial stress in the context of the cells treated with 50 or 500μMParaquat or 3μM2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid. Notably, glucose concentration directly affected mammalian mitochondrial unfolded protein response signaling in vitro. Taken together, the results of the study indicates that the HEK293 cell line should be used to evaluate the expression levels of the genes upon mitochondrial stress conditions and might pave the way for the development of novel therapies for the cure of mitochondrial disorders and associated diseases in the future..

    References

    Bernstein S.H., Venkatesh S., Li M., Lee J., Lu B., Hilchey S.P., Morse K.M., Metcalfe H.M., Skalska J., Andreeff M., Brookes P.S. & Suzuki C.K. (2012). The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood. 119(14): 3321-3329.

    Berry C., La Vecchia C. & Nicotera P. (2010). Paraquat and Parkinson's disease. Cell Death Differ. 17(7): 1115-1125.

    Bresciani N., Demagny H., Lemos V., Pontanari F., Li X., Sun Y., Li H., Perino A., Auwerx J. & Schoonjans K. (2022). The Slc25a47 locus is a novel determinant of hepatic mitochondrial function implicated in liver fibrosis. J Hepatol. 77(4): 1071-1082.

    Brookes P.S., Morse K., Ray D., Tompkins A., Young S.M., Hilchey S., Salim S., Konopleva M., Andreeff M., Phipps R. & Bernstein S. H. (2007). The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid and its derivatives elicit human lymphoid cell apoptosis through a novel pathway involving the unregulated mitochondrial permeability transition pore. Cancer Res. 67(4): 1793-1802.

    Burbulla L.F., Schelling C., Kato H., Rapaport D., Woitalla D., Schiesling C., Schulte C., Sharma M., Illig T., Bauer P., Jung S., Nordheim A., Schols L., Riess O. & Kruger R. (2010). Dissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: functional impact of disease-related variants on mitochondrial homeostasis. Hum Mol Genet. 19(22): 4437-4452.

    Bus J.S., Aust S.D. & Gibson J.E. (1976). Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. Environ Health Perspect. 16: 139-146.

    Castello P.R., Drechsel D.A. & Patel M. (2007). Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem. 282(19): 14186-14193.

    Cocheme H.M. & Murphy M.P. (2008). Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem. 283(4): 1786-1798.

    Croteau E., Castellano C.A., Fortier M., Bocti C., Fulop T., Paquet N. & Cunnane S.C. (2018). A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer's disease. Exp Gerontol. 107: 18-26.

    Dinis-Oliveira R.J., Duarte J.A., Sanchez-Navarro A., Remiao F., Bastos M.L. & Carvalho F. (2008). Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol. 38(1): 13-71.

    Fernandes V., Choudhary M., Kumar A. & Singh S.B. (2020). Proteotoxicity and mitochondrial dynamics in aging diabetic brain. Pharmacol Res. 159: 104948.

    Gaither K.A., Watson C.J.W., Madarampalli B. & Lazarus P. (2020). Expression of activating transcription factor 5 (ATF5) is mediated by microRNA-520b-3p under diverse cellular stress in cancer cells. PLoS One. 15(6): e0225044.

    Hansen J.J., Durr A., Cournu-Rebeix I., Georgopoulos C., Ang D., Nielsen M.N., Davoine C.S., Brice A., Fontaine B., Gregersen N. & Bross P. (2002). Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet. 70(5): 1328-1332.

    Havalova H., Ondrovicova G., Keresztesova B., Bauer J.A., Pevala V., Kutejova E. & Kunova N. (2021). Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci. 22(15): 8077.

    Haynes C.M. & Ron D. (2010). The mitochondrial UPR - protecting organelle protein homeostasis. J Cell Sci. 123(Pt 22): 3849-3855.

    Houtkooper R.H., Mouchiroud L., Ryu D., Moullan N., Katsyuba E., Knott G., Williams R. W. & Auwerx J. (2013). Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 497(7450): 451-457.

    Jensen M.B. & Jasper H. (2014). Mitochondrial proteostasis in the control of aging and longevity. Cell Metab. 20(2): 214-225.

    Kambe Y., Yamauchi Y., Thanh Nguyen T., Thi Nguyen T., Ago Y., Shintani N., Hashimoto H., Yoshitake S., Yoshitake T., Kehr J., Kawamura N., Katsuura G., Kurihara T. & Miyata A. (2021). The pivotal role of pituitary adenylate cyclase-activating polypeptide for lactate production and secretion in astrocytes during fear memory. Pharmacol Rep. 73(4): 1109-1121.

    Liu Y., Li Z., Xue X., Wang Y., Zhang Y. & Wang J. (2018). Apigenin reverses lung injury and immunotoxicity in paraquat-treated mice. Int Immunopharmacol. 65: 531-538.

    Livak K.J. & Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4): 402-408.

    Lock E.A. & Wilks M.F. (2010). Chapter 83 - Paraquat. In: Hayes' Handbook of Pesticide Toxicology (Third Edition). Krieger R. (ed.). Academic Press New York. pp. 1771-1827.

    Nargund A.M., Pellegrino M.W., Fiorese C.J., Baker B.M. & Haynes C.M. (2012). Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science. 337(6094): 587-590.

    Pellegrino M.W., Nargund A.M. & Haynes C.M. (2013). Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta. 1833(2): 410-416.

    Runkel E.D., Liu S., Baumeister R. & Schulze E. (2013). Surveillance-activated defenses block the ROS-induced mitochondrial unfolded protein response. PLoS Genet. 9(3): e1003346.

    Stetler R. A., Gan Y., Zhang W., Liou A. K., Gao Y., Cao G. & Chen J. (2010). Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol. 92(2): 184-211.

    Sun B. & Chen Y.G. (2016). Advances in the mechanism of paraquat-induced pulmonary injury. Eur Rev Med Pharmacol Sci. 20(8): 1597-1602.

    Wang J., Lu S., Zheng Q., Hu N., Yu W., Li N., Liu M., Gao B., Zhang G., Zhang Y. & Wang H. (2016). Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction. Cardiovasc Toxicol. 16(3): 235-243.

    Weise C. M., Chen K., Chen Y., Kuang X., Savage C.R., Reiman E.M. & Alzheimer's Disease Neuroimaging I. (2018). Left lateralized cerebral glucose metabolism declines in amyloid-beta positive persons with mild cognitive impairment. Neuroimage Clin. 20: 286-296.

    Yoneda T., Benedetti C., Urano F., Clark S.G., Harding H.P. & Ron D. (2004). Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci. 117(Pt 18): 4055-4066.

    Yu G., Kan B., Jian X., Wang J., Sun J. & Song C. (2014). A case report of acute severe paraquat poisoning and long-term follow-up. Exp Ther Med. 8(1): 233-236.

    Zou W., Yue P., Khuri F.R. & Sun S.Y. (2008). Coupling of endoplasmic reticulum stress to CDDO-Me-induced up-regulation of death receptor 5 via a CHOP-dependent mechanism involving JNK activation. Cancer Res. 68(18): 7484-7492.