In VitroEffects of Minerals on Sporulation and Heat Resistance of BacillussubtilisCM3.1

Received: 29-03-2023

Accepted: 05-10-2023

DOI:

Views

0

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Ngan, P., Hai, V., & Giang, H. (2024). In VitroEffects of Minerals on Sporulation and Heat Resistance of BacillussubtilisCM3.1. Vietnam Journal of Agricultural Sciences, 21(10), 1249–1255. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1195

In VitroEffects of Minerals on Sporulation and Heat Resistance of BacillussubtilisCM3.1

Pham Thi Tuyet Ngan (*) 1 , Vu Hung Hai 1 , Huynh Truong Giang 1

  • 1 Trường Thủy sản, Đại học Cần Thơ
  • Keywords

    Bacillus, sporulation, heat resistance, minerals, spore cell density

    Abstract


    This study sought to evaluate the in vitro effects of minerals, including calcium (Ca2+),potassium (K⁺), manganese (Mn2+),magnesium (Mg2+) and iron(Fe2+) on sporulation efficiency and heat resistance of BacillussubtilisCM3.1. Sporulation of Bacillus cells was induced in sporulation medium supplemented with various concentrations of the minerals. 7 days after inoculation, Ca2+(1mm), Mg2+(3mm), Mn2+(1mm) and Fe2+(1mm) as single supplements into Nutrient Broth (NB) significantly increased spore cell density of BacillussubtilisCM3.1, except for K+(10mm). Furthermore, the spore cell density and viability of Bacillus were detectable in sporulation media such as m-NB, SSM and m-SM, significantly higher compared to those in NB (P <0.05) after heating periods, especially from 30 to 40 minutes of exposure. Our results could provide better understanding of the importance of minerals supplemented into culture medium in improving the density, heat resistance of Bacillus spore, and thus enhancingthe stability of probiotic Bacillus subtilis CM3.1 during manufacturing process and storage time.

    References

    APHA (2017). Standard methods for the examination of water and wastewater, 23rd Edition. American public health association, American water works association, water environment federation, Denver. 1504p.

    Atrih A. & Foster S.J. (2002). Bacterial endospores the ultimate survivors. International Dairy Journal. 12: 217-223.

    Bassi D., Cappa F. & Cocconcelli P.S. (2012). Water and cations flux during sporulation and germination. In: Abel-Santos E (ed). Bacteria Spores: Current Research and Applications. Norfolk, UK: Caister Academic Press. pp. 143-167.

    Beaman T.C. & Gerhardt P. (1986). Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization and thermal adaptation. Applied and Environmental Microbiology. 52: 1242- 1246.

    Cazemier A.E., Wagenaars S.F.M. & ter Steeg P.F. (2001). Effect of sporulation and recovery medium on the heat resistance and amount of injury of spores from spoilage bacilli. Journal of Applied Microbiology. 90: 761-770.

    Cho W.-I. & Chung M.-S. (2020). Bacillusspores: a review of their properties and inactivation processing technologies. Food Science and Biotechnology. 29: 1447-1461.

    Cruz M.P., Ibáñez A.L., Monroy H.O.A. & Ramírez S.H.C. (2012). Use of Probiotics in Aquaculture. ISRN Microbiology. pp.1-13.

    Eisenstadt E. (1972). Potassium content during growth and sporulation in Bacillus subtilis. Journal of bacteriology. 112(1): 264-267.

    Faille C., Lebret V., Gavin F. & Maingonnat J.F. (1997). Injury and lethality of heat treatment of Bacilluscereusspores in buffer and poultry meat. Journal of Food Protection. 60: 544-547.

    Hue N.T.M., Guyot S., Perrier-Cornet J.M. & Gervais P. (2008). Effect of the osmotic conditions during sporulation on the subsequent resistance of bacterial spores. Applied microbiology and biotechnology. 80(1): 107-114.

    Igura N., Kamimura Y., Islam M.S., Shimoda M. & Hayakawa I. (2003). Effects of minerals on resistance of Bacillus subtilisspores to heat and hydrostatic pressure. Applied and environmental microbiology. 69(10): 6307-6310.

    Kewcharoen W. & Srisapoome P. (2019). Probiotic effects of Bacillusspp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrioparahaemolyticus(AHPND strains). Fish and Shellfish Immunology. 94: 175-189.

    Kolodziej B.J. & Slepecky R.A. (1964). Trace metal requirements for sporulation of Bacillusmegaterium. Journal of Bacteriology. 88(4): 821-830.

    Kuebutornye F.K.A., Abarike E.D. & Lu Y. (2019). A review on the application of Bacillusas probiotics in aquaculture. Fish & Shellfish Immunology. 87: 820-828.

    Lacroix C. & Yildirim S. (2007). Fermentation technologies for the production of probiotics with high viability and functionality. Current Opinion in Biotechnology. 18(2): 176-183.

    Mah J-H., Kang D-H. & Tang J. (2008). Effects of minerals on sporulation and heat resistance of Clostridium sporogenes. International Journal of Food Microbiology. 128(2): 385-389.

    Marquis R.E. & Shin S.Y. (1994). Mineralization and responses of bacterial spores to heat and oxidative agents. FEMS Microbiology Reviews. 14(4): 375-379.

    Martin J.H. & Chuang A.H.L. (1971). Changes in Cation Concentration in Spores of Bacillus licheniformisDuring Germination Induced by L-alanine. Journal of Dairy Science. 54(6): 921-923.

    Nayak S.K. (2020). Multifaceted applications of probiotic Bacillusspecies in aquaculture with special reference to Bacillus subtilis. Reviews in Aquaculture. pp. 1-45.

    Phạm Thị Tuyết Ngân, Vũ Hùng Hải, Vũ Ngọc Út & Huỳnh Trường Giang (2021). Chọn lọc vi khuẩn Bacillussp. từ ao nuôi tôm quảng canh có khả năng phân hủy hữu cơ và kháng Vibrioparahaemolyticusgây bệnh trên tôm thẻ. Tạp chí Khoa học Trường Đại học Cần Thơ. 57(3B): 191-199.

    Phạm Thị Tuyết Ngân, Vũ Hùng Hải Vũ Ngọc Út & Huỳnh Trường Giang (2022). Ảnh hưởng của vi khuẩn BacillusCM3.1 lên chất lượng nước và tăng trưởng của tôm thẻ chân trắng (Litopenaeusvannamei). Tạp chí Khoa học Đại học Cần Thơ. 58(4B): 175-184.

    Palop A., Mañas P. & Condón S. (1999). Sporulation temperature and heat resistance of Bacillusspores: a review. Journal of Food Safety. 19: 57-72.

    Park H.S., Yang J., Choi H. J. & Kim K.H. (2017). Effective Thermal Inactivation of the Spores of Bacillus cereusBiofilms Using Microwave. Journal of Microbiology and Biotechnology. 27(7): 1209-1215.

    Ren H., Su Y.T. & Guo X.H. (2018). Rapid optimization of spore production from Bacillusamyloliquefaciensin submerged cultures based on dipicolinic acid fluorimetry assay. AMB Express. 8: 21.

    Schaeffer P., Millet J. & Aubert J.P. (1965). Catabolic repression of bacterial sporulation. Proceedings of the National Academy of Sciences of the United States of America. 54: 704.

    Selim K.M. & Reda R.M. (2015). Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillusamyloliquefaciens. Fish & Shellfish Immunology. 44: 496-505.

    Sella S.R.B.R., Vandenberghe L.P.S. & Soccol C.R. (2014). Life cycle and spore resistance of spore-forming Bacillus atrophaeus. Microbiological Research. 169(12): 931-939.

    Sinnelä M.T., Park Y.K., Lee J.H., Jeong K.C., Kim Y.-W., Hwang H.-J. & Mah J.-H (2019). Effects of Calcium and Manganese on Sporulation of BacillusSpecies Involved in Food Poisoning and Spoilage. Foods. 8: 119.

    Wakisaka Y., Masaki E. & Nishimoto Y. (1982). Formation of crystalline -endotoxin or poly--hydroxybutyric acid granules by asporogenous mutants of Bacillus thuringiensis. Applied and Environmental Microbiology. 43: 1473-1480.

    Yuniarti A., Arifin N.B., Fakhri M. & Hariati A.M. (2019). Spore production and sporulation efficacy of Bacillus subtilisunder different source of manganese supplementation. Jurnal ilmiah perikanan dan kelautan. 11(2): 51-58.

    Zhang D., Wang Z. & Zhou W. (2018). Effect of Ca2+, Mg2+, Mn2+on Growth and Sporulation of Bacillussp. L15. 7thInternational Conference on Energy. Environment and Sustainable Development (ICEESD 2018).