Received: 21-12-2022
Accepted: 04-08-2023
DOI:
Views
Downloads
How to Cite:
Heterosis and Combining Ability of Yield and Quality Traits of Purple Cherry Tomato Lines
Keywords
Purple cherry tomato, heterosis, general combining ability
Abstract
This studywas designed toevaluate the heterosisand general combining ability (GCA) of ten S3purple cherry tomato lines based on the Line×Tester model to select elite parental lines with high combiningability in terms of yield and quality. Ten cherry tomato lines, three testers, thirty crosses,andtwo checks were evaluated based on 11 agronomic traits in 2022 Autumn-Winterseasonin Hanoi under polyhouse. The results showedthat purple tomato varieties can be created by crossing purple tomato lines with purple or red cherry tomato lines. The mid parent and best parent heterosis showed negative values in almost all traits and crosses investigated. D10 hada significant positive GCAeffectformarketable yield. Three lines viz.,D3, D6, and D9 had significant positive GCAeffect fortotal soluble solids content.Two dark purple cherry tomato crosses viz., D10×T3 (38.1 tons/ha, 9.0Brix) and D6×T3 (35.2 tons/ha, 9.8Brix) showedbreeding potential to develop new cherry tomato lines in the next segregation generation
References
Bộ NN&PTNT (2011a). Quy chuẩn kỹ thuật quốc gia QCVN 01-63:2011/BNNPTNT về Khảo nghiệm giá trị canh tác và sử dụng của giống cà chua.
Bộ NN&PTNT (2011b). Quy chuẩn kỹ thuật quốc gia QCVN 01-70:2011/BNNPTNT về khảo nghiệm tính khác biệt, tính đồng nhất và tính ổn định của giống cà chua.
Butelli E., Bulling K., Hill L. & Martin C. (2021). Beyond purple tomatoes: Combined strategies targeting anthocyanins to generate crimson, magenta, and indigo fruit. Horticulturae. 7(9).
Chetelat R. & Peacock S. (2013). Guidelines for emasculating and pollinating tomatoes. C.M. Rick Tomato Genetics Resource Center University of California, Davis. pp. 1-3.
Colanero S., Perata P. & Gonzali S. (2020). What's behind purple tomatoes? Insight into the mechanisms of anthocyanin synthesis in tomato fruits. Plant Physiology. 182(4): 1841-1853.
Gonzali S. & Perata P. (2021). Fruit colour and novel mechanisms of genetic regulation of pigment production in tomato fruits. Horticulturae. 7(8).
Hallauer A.R., Carena M.J. & Filho J.B.M. (2010). Testers and combining ability. In: Quantitative Genetics in Maize Breeding. pp. 383-423.
Hannan M.M., Biswas M.K., Ahmed M.B., Hossain M. & Islam R. (2007). Combining ability analysis of yield and yield components in tomato (Lycopersicum esculentumMill.). Turkish Journal of Botany. 31(6): 559-563.
Herath H.N., Rafii M.Y., Ismail S.I., Jj N. & Ramlee S.I. (2021). Improvement of important economic traits in chilli through heterosis breeding: a review. The Journal of Horticultural Science and Biotechnology. 96(1): 14-23.
Kumar R., Singh S.K. & Srivastava K. (2018). Stability analysis in tomato inbreds and their F1s for yield and quality traits. Agricultural Research. 8(2): 141-147.
Lenucci M.S., Cadinu D., Taurino M., Piro G. & Dalessandro G. (2006). Antioxidant compositionin cherry and high-pigment tomato cultivars. Journal of Agricultural and Food Chemistry. 54(7): 2606-2613.
Li F., Song X., Wu L., Chen H., Liang Y. & Zhang Y. (2018). Heredities on fruit color and pigment content between green and purple fruits in tomato. Scientia Horticulturae. 235: 391-396.
Li Y., Nie J., Shi L., Xie Y., Tan D., Yang X., Zhang C. & Zheng J. (2022). Transcriptomic and metabolomic profiling reveals the mechanisms of color and taste development in cherry tomato cultivars. LWT. 167: 113810.
Liu Z., Jiang J., Ren A., Xu X., Zhang H., Zhao T., Jiang X., Sun Y., Li J. & Yang H. (2021). Heterosis and combining ability analysis of fruit yield, early maturity, and quality in tomato. Agronomy. 11(4).
Mahan A.L., Murray S.C., Rooney L.W. & Crosby K.M. (2013). Combining ability for total phenols and secondary traits in a diverse set of colored (red, blue, and purple) maize. Crop Science. 53(4): 1248-1255.
Mes P.J., Boches P., Myers J.R. & Durst R. (2008). Characterization of tomatoes expressing anthocyaninin the fruit. Journal of the American Society for Horticultural Science. 133(2): 262-269.
Nguyễn Trung Đức, Nguyễn Thị Nguyệt Anh, Phạm Quang Tuân, Vũ Thị Thương, Nguyễn Viết Linh, Bùi Thị Thuỷ & Vũ Văn Liết (2023). Đánh giá đa dạng di truyền dựa trên kiểu hình quả nguồn gen cà chua bi qua ảnh. Tạp chí Khoa học Nông nghiệp Việt Nam. 21(4): 401-413.
Rehana S., Ullah M.Z., Zeba N., Narzis N., Husna A. & Siddique A.B. (2019). Estimation of heterosis for yield and yield attributing traits in tomato crossed with line and tester method. Progressive Agriculture. 30(2): 179-185.
Rodríguez F., Alvarado G., Pacheco Á., Crossa J. & Burgueño J. (2015). AGD-R (Analysis of Genetic Designs with R for Windows) Version 5.0. Retrievedfromhttps://data.cimmyt.org/ dataset. xhtml? persistentId=hdl:11529/10202on October 20, 2022.
Suzukawa A.K., Garcia M.M., Contreras-Soto R.I., Zeffa D.M., Coan M.M.D. & Scapim C.A. (2018). Diallel analysis of tropical and temperate sweet and supersweet corn inbred lines. Revista Ciência Agronômica. 49(4): 607-615.
Tamta S. & Singh J.P. (2017). Heterosis in tomato for growth and yield traits. International Journal of Vegetable Science. 24(2): 169-179.
Yan W. & Hunt L. (2002). Biplot analysis of diallel data. Crop Science. 42(1): 21-30.