Automatic Quality Assessment of Potato Tuber Seeds using Computer Vision

Received: 06-01-2023

Accepted: 27-01-2023

DOI:

Views

3

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Huyen, D., Duyen, N., Duong, N., & Dieu, N. (2024). Automatic Quality Assessment of Potato Tuber Seeds using Computer Vision. Vietnam Journal of Agricultural Sciences, 21(1), 78–86. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1091

Automatic Quality Assessment of Potato Tuber Seeds using Computer Vision

Dang Thi Thuy Huyen (*) 1 , Nguyen Thi Duyen 1 , Ngo Tri Duong 1 , Nguyen Van Dieu 1

  • 1 Khoa Cơ - Điện, Học viện Nông nghiệp Việt Nam
  • Keywords

    Automatic quality assessment, potato tuber seeds, number of sprouts, Actinomyces scabies, Helminthosporium solani

    Abstract


    This study aimedto design an automaticmodelfor quality assessment of potatotuber seeds by applying computer vision. In the study, a number of sproutsandtuber scab diseases (Actinomyces scabiesand Helminthosporium solani) were selected to evaluate the quality of potatotuber seeds. Apicture of the object was taken by Pi 2/3 camera and sentit to Raspberry Pi 4B embedded computer to process the received image with the YOLO-v4 algorithm. Initially,the model drew conclusions about the quality of the seed potatoes through counting the number of sprouts and identifying scabdiseases on tubers with an average processing time of 0.147 seconds. The rate of accurate identification of the diseaseson infected tubers was 93.33% with Actinomyces scabiesand94.74% with Helminthosporium solani.95.56% of sprouted tubers were counted correctly. This evaluation model can be used in an automatic sorting potato seed tubers before planting.

    References

    Dai G., Hu L., Fan J., Yan S. & Li R. (2022). A deep learning - based object detection scheme by improving YOLOv5 for sprouted potatoes datasets. IEEE Access. 10: 85416-85428.

    Dor O.,Yael E.& Guy S.(2017). Detecting tomato flowers in greenhouses using computer vision. International science index, computer and information engineering.11(1): 104-109.

    Du Y., Hu Y., San L. &Tian J. (2019). Research on potato appearance quality detection based on computer vision.5thInternational Conference on Control, Automation and Robotics (ICCAR), Beijing, China.pp. 286-289.

    Gittaly Dhingra, Vinay Kumar& Hem Dutt Joshi (2019). A novel computer vision based neutrosophic approach for leaf disease identification and classification. Measurement. 135: 782-794.

    Jing Jin, Jinwei Li, Guiping Liao, Xiaojuan Yu&Leo Christopher C. Viray (2009).Methodology for potatoes defects detection with computer vision. International symposiumon information processing (ISIP’09) Huangshan.P.R. China, August 21-23. pp. 346-351.

    JingX., ZhiliangH., LinyueT.&Juntao X.(2018). Research of potato qualitydetection technology based on computer vision.Comput. Eng. Appl. 54(5):165-169.

    KurichetiG. &SupriyaP. (2019). Computer vision based turmeric leaf disease detection and classification: A step to smart agriculture. 3rd International Conference on Trends in Electronics and Informatics (ICOEI).pp. 545-549.

    Noor Fatima, Raza Imam, Mohd Belal, Preeti Verma & Ghufran Ullah (2022). A computer vision - based quality analysis of potatoes. Sustainability and Resilience Conference: Design Innovation (SRC). pp. 109-113.

    Nguyễn Minh Triết, Trương Quốc Bảo & Trương Quốc Định (2017). Tự động nhận dạng một số loại sâu bệnh trên lá bưởi sử dụng công nghệ ảnh. Tạp chí Khoa học Trường Đại học Cần Thơ,Số chuyên đề: Công nghệ thông tin, tr. 88-95.

    Nguyễn Thị Thuỷ, Vũ Hải, Nguyễn Thị Huyền & Phạm Thị Lan Anh (2015).Tự động hóa phát hiện búp chè dựa trên thị giác máy tính. Tạp chí Khoa học và Phát triển.13(6):968-975.

    Phan Thị Thu Hồng, Đoàn Thị Thu Hà & Nguyễn Thị Thủy (2013). Ứng dụng phân lớp ảnh chụp lá cây bằng phương pháp máy vecto hỗ trợ. Tạp chí Khoa học và Phát triển.11(7):1045-1052.

    Peng Wan, Arash Toudeshki, Hequn Tan & Reza Ehsani (2018). A methodology for fresh tomatomaturity detection using computer vision. Computers and Electronics in Agriculture.146:43-50.

    Siddhant Kumar, Gourav Chowdhary, Venkanna Udutalapally, Debanjan Das& Saraju Mohanty P. (2019). gCrop: Internet-of-Leaf-Things (IoLT) for monitoring of the growth ofcrops in smart agriculture. IEEE International Symposium on Smart Electronic Systems(iSES) (Formerly iNiS).