Factors affecting cell Immobilization of Virgibacillus campisalisTT8.5 and applicability of immobilized cells for histamine degradation in traditional fish sauce

Received: 24-10-2022

Accepted: 20-12-2022

DOI:

Views

2

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Anh, N., Ly, N., Diu, P., Hong, N., Khoa, G., Huong, T., … Anh, N. (2024). Factors affecting cell Immobilization of Virgibacillus campisalisTT8.5 and applicability of immobilized cells for histamine degradation in traditional fish sauce. Vietnam Journal of Agricultural Sciences, 20(12), 1619–1630. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1078

Factors affecting cell Immobilization of Virgibacillus campisalisTT8.5 and applicability of immobilized cells for histamine degradation in traditional fish sauce

Nguyen Thi Phuong Anh (*) 1 , Nguyen Thi Hong Ly 2 , Pham Thi Diu 1 , Nguyen Thi Hong 1 , Giang Trung Khoa 1 , Tran Thi Lan Huong 1 , Nguyen Thi Lam Doan 1 , Nguyen Thi Thanh Thuy 1 , Tran Thi Thu Hang 1 , Nguyen Hoang Anh 1

  • 1 Khoa Công nghệ thực phẩm, Học viện Nông nghiệp Việt Nam
  • 2 Chi cục Dự trữ Nhà nước Hải An, Cục Dự trữ Nhà nước khu vực Đông Bắc
  • Keywords

    Virgibacillus campisalisTT8.5, cell immobilization, cell immobilization efficiency, histamine degrading efficiency, carrier, pigbone

    Abstract


    The objective of this study was to immobilize Virgibacillus campisalisTT8.5 bacterial cells on a carrier in order to degrade histamine content in traditional fish sauce. Three immobilization techniques, adsorption, encapsulation and crosslinking with nine carriers were used. Factors affecting the immobilization process of bacteria on carrier such as cells/carrier (w/w) ratio, time and temperature of immobilization, salt concentration in buffer solution (%) and stirring speed (rpm) were investigated. The cell immobilization efficiency (%) and the ability to degrade histamine after 2 hours of reaction (%) of Virgibacillus campisalisTT8.5 were evaluated. Results indicate that, the adsorption technique with pig bone as carrier gave the highest immobilization efficiency and histamine degrading ability with 54.18% and 41.30% respectively. Suitable conditions for immobilization of Virgibacillus campisalisTT8.5 cells on pig bone were determined as follows: cell/carrier ratio 1/15 (w/w), stirring speed of 100 rpm, salt concentration of 15%, incubation time of 1 hour at 4C. The fixed bed bioreactor containing immobilized V. campisalisTT8.5 bacterial cells has potential application in histamine degradation in traditional fish sauce with efficiency of 37.1%.

    References

    Akin C. (1987). Biocatalysis with immobilized cells. Biotechnol. Genet. Eng. Rev.

    Bộ Khoa học và Công nghệ (2018). TCVN 5107:2018. Tiêu chuẩn quốc gia cho sản phẩm nước mắm. Truy cập từ https://vanbanphapluat.co/tcvn-5107-2018-nuoc-mamngày 23.05.2020

    Carrara C.R. & Rubiolo A.C. (1994). Immobilization of b-galactosidase on chitosan. Biotechnology Progress. 10: 220-224.

    Chaikaew S., Tepkasikul P., Young G.M., Osako K., Bejakul S. & Visessanguan W. (2015). Fixed-bed degradation of histamine in fish sauce by immobilized whole cells of Natrinema gari BCC 24369. Fish Sci. 81: 971-981.

    FAO (2011). Codex stan 302-2011. Standard for fish sauce.

    Genisheva Z., Mota A., Mussatto S.I., Oliveira J.M. & Teixeira J.A (2014). Integrated continuous winemaking process involving sequential alcoholic and malolactic fermentations with immobilized cells. Process Biochem. 49: 1-9.

    Górecka E. & Jastrzębska M. (2011). Immobilization techniques and biopolymer carriers. Biotechnol. Food Sci. 75: 65-86.

    Junter G.A. & Jouenne T. (2004). Immobilized viable microbial cells: from the process to the proteome… or the cart before the horse. Biotechnology advances. 22: 633-658.

    Khare S.K. & Nakajima M. (2000). Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil. Food chemistry. 68(2): 153-157.

    Kozlyak E.I., Solomon Z.G., Yakimov M.M. & Fadyushina T.V. (1993). The Sorption of Pseudomonas fluorescens 16n2 cells on various adsorbents. Prikl. Biokhim. Mikrobiol. 29: 138-143.

    Köse S. (2010) Evaluation of seafood safety health hazards for traditional fish products: Preventive measures and monitoring issues. Turkish J. Fish. Aquatic Sci. 10: 139-160.

    Lee K.S., Lo Y.S., Lo Y.C., Lin P.J. & Chang J.S. (2003). H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol. 25: 133-138.

    Mah J.H., Ahn J.B., Park J.H., Sung H.C. & Hwang H.J. (2003). Charactrization of biogenic amine-produccing microorganisms isolated from Myeolchi-Jeot., Korean slated and fermented anchovy. Journal of Microbiology and Biotechnology. 13: 362-699.

    Martuscelli M., Crudele M.A., Gardini F. & Suzzi G. (2000). Biogenic amine formation and oxidation by Staphylococcus xylosusstrains from artisanal fermented sausages. Lett. Appl. Microbiol. 31: 228-232.

    Negishi S., Sato S., Mukataka S. & Takahashi J. (1989). Utilization of Powdered Pig Bone as a Support for Immobilization of Lipase. Journal of fermentation and bioengineerin. 67(5): 350-355.

    Nighojkar S., Phanse Y., Sinha D., Nighojkar A. & Kumar A. (2006). Production of polygalacturonase by immobilised cells of Aspergillus niger using orange peel as inducer. Process Biochemistry. 41: 1136-1140.

    Nikovskaya G.N. (1989). The adhesive immobilization of microorganisms in water purification, Khim. Tekhnol. 11: 158-169.

    Pereira E.B., Zanin G.M. & Castro H.F. (2003). Immobilization and catalytic properties of lipase on chitosan for hydrolysis and esterification reactions. Brazilian Journal of Chemical Engineering. 20: 343-355.

    Pilkington H., Margaritis A., Mensour N.A. & Russell I. (1998). Fundamentals of immobilised yeast cells for continuous beer fermentation: A review. Journal of the Institute of Brewing. 104: 19-31.

    Stolarzewicz I., Białecka-Florjańczyk E., Majewska E. & Krzyczkowska J. (2011). Immobilization of yeast on polymeric supports. Chemical and biochemical engineering quarterly. 25: 135-144.

    Sumitra Datta & Rene Christena L. (2012). Enzyme immobilization: an overview on techniques and support materials. 3-Biotech. 3(1): 1-9.

    Takeno K., Yamaoka Y. & Sasaki K. (2005). Treatment of oil-containing sewage wastewater using immobilised photosynthetic bacteria. World Journal of Microbiology and Biotechnology.21: 1385-1391.

    Tapingkae W., Parkin K.L., Tanasuwat S., Kruenate J., Bejakul S. & Visessanguan W. (2010b). Whole cell immobilisation of Natrinema gari BCC 24369 for histamine degradation. Food Chemistry. 120: 841-849.

    Tapingkae W., Somboon Tanasupawat, Kirk L. Parkinc, Soottawat Benjakul & Wonnop Visessanguand (2010a). Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products. Enzyme and Microbial Technology. 46: 92-99.

    Thụy Khanh (2013). Mức giới hạn hàm lượng histamine trong sản phẩm nước mắm truyền thống. Liên hiệp các Hội Khoa học và kỹ thuật tỉnh Bình Thuận.

    Trần Thị Thu Hằng, Nguyễn Hoàng Anh, Nguyễn Thị Tình, Bùi Thị Thu Hiền & Chu Đình Bính (2019). Xác định histamine bằng phương pháp sắc ký lỏng hiệu năng cao: ứng dụng trong nghiên cứu phân giải histamine trong nước mắm bằng vi khuẩn. Tạp chí Phân tích Lý, Hóa và Sinh học. 24(4B).

    Venkaiah B. & Kumar A. (1994). Egg shell bound starch phosphorylase packed bed reactor for the continuous production of glucose-1-phosphate. Journal of Biotechnology. 36: 11-17.

    Vidyasagar M., Prakash S.B. & Sreeramulu K. (2006). Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101. Letters in Applied Microbiology. 43: 385-391.

    Zaman M.Z., Bakar F.A., Selamat J. & Bakar J..(2010). Occurrence of biogenic amines and amines degrading bacteria in fish sauce. Czech Journal of Food Sciences. 28: 440-449.