Genetic Diversity and Population Structure of Passion Fruit (Passiflora edulis Sim.) Accessions Revealed by SRAP and ISSR Markers

Received: 14-10-2021

Accepted: 01-03-2022

DOI:

Views

12

Downloads

3

Section:

NÔNG HỌC

How to Cite:

Trung, T., Viet, N., & Dang, B. (2024). Genetic Diversity and Population Structure of Passion Fruit (Passiflora edulis Sim.) Accessions Revealed by SRAP and ISSR Markers. Vietnam Journal of Agricultural Sciences, 20(4), 425–435. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/984

Genetic Diversity and Population Structure of Passion Fruit (Passiflora edulis Sim.) Accessions Revealed by SRAP and ISSR Markers

Tran Duc Trung (*) 1 , Nguyen Van Viet 2 , Bui Quang Dang 1

  • 1 Viện Khoa học Nông nghiệp Việt Nam
  • 2 Viện Nghiên cứu và Phát triển Nông nghiệp Nafoods
  • Keywords

    Passiflora, genetic diversity, population structure, ISSR, SRAP

    Abstract


    Identification of potential germplasms is the crucial step for selection and breeding program of passion fruit (Passiflora edulisSims.). In this study, genetic diversity and population structure of 31 exotic passion fruit accessions (including wild relative P. incarnata accessions) were assessed using sequence-related amplified polymorphism (SRAP) and inter simple sequence repeat (ISSR) markers. By primary screening for marker specificity and polymorphism, 8/15 SRAP markers and 10/18 ISSR were selected for passion fruit genotyping. The heterozygosity index H(0.43), polymorphic information content PIC(0.35), and discriminating power D(0.8) were recorded at a high level implying the significant genetic diversity of the analyzed passion fruit accessions. The Neighbor-Joining phylogenetic tree in combination with population structure model revealed by STRUCTURE discriminated and clustered the studied accessions into five groups which showed high accordance with the fruit color and the origin of the accessions. The analysis of melecular variance (AMOVA) also indicated the high rate of intraspecific and possibility interspecific hybridization among Passifloraspecies. These results provide essential genetic background facilitating efficient conservation and utilization of exotic passion fruit accessions in Vietnam.

    References

    Al Salameen F., Habibi N., Kumar V., Al Amad S., Dashti J., Talebi L. & Al Doaij B. (2018). Genetic diversity and population structure of Haloxylon salicornicummoq. in Kuwait by ISSR markers. Plos One. 13(11): e0207369.

    Castro J.A., Neves C.G., de Jesus O.N. & de Oliveira E.J. (2012). Definition of morpho-agronomic descriptors for the characterization of yellow passion fruit. Scientia Horticulturae. 145: 17-22.

    Cerqueira-Silva C.B.M., Faleiro F.G., de Jesus O.N., dos Santos E.S.L. & de Souza A.P. (2018). Passion fruit (Passifloraspp.) breeding. In: Al-Khayri J.M., Jain S. M. & Johnson D.V. (Eds). Advances in plant breeding strategies: Fruits: Volume 3. Springer International Publishing. pp. 929-951.

    Cerqueira-Silva C.B.M., Jesus O.N., Oliveira E.J., Santos E.S.L. & Souza A.P. (2015). Characterization and selection of passion fruit (yellow and purple) accessions based on molecular markers and disease reactions for use in breeding programs. Euphytica. 202(3): 345-359.

    de Melo C.A.F., Souza M.M., Viana A.P., Santos E.A., de Oliveira Souza V. & Corrêa R.X. (2016). Morphological characterization and genetic parameter estimation in backcrossed progenies of PassifloraL. for ornamental use. Scientia Horticulturae. 212: 91-103.

    dos Santos L.F., de Oliveira E.J., dos Santos Silva A., de Carvalho F.M., Costa J.L. & Pádua J.G. (2011). ISSR markers as a tool for the assessment of genetic diversity in Passiflora. Biochemical Genetics. 49(7): 540-554.

    Joy P.P. (2010). Status and prospects of passion fruit cultivation in Kerala. Kerala Agricultural University. 12.

    Kumar J. & Agrawal V. (2019). Assessment of genetic diversity, population structure and sex identification in dioecious crop, Trichosanthes dioicaemploying ISSR, SCoT and SRAP markers. Heliyon. 5(3): e01346.

    Laidò G., Mangini G., Taranto F., Gadaleta A., Blanco A., Cattivelli L., Marone D., Mastrangelo A.M., Papa R. & De Vita P. (2013). Genetic diversity and population structure of tetraploid ưheats (Triticum turgidumL.) estimated by SSR, DArT and pedigree data. Plos One. 8(6): e67280.

    Li G. & Quiros C.F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics. 103(2): 455-461.

    Li Y.L. & Liu J.X. (2018). StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour. 18(1): 176-177.

    Liu K. & Muse S.V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 21(9): 2128-2129.

    Oluoch P., Nyaboga E.N. & Bargul J.L. (2018). Analysis of genetic diversity of passion fruit (Passiflora edulisSims) genotypes grown in Kenya by sequence-related amplified polymorphism (SRAP) markers. Annals of Agrarian Science. 16(4): 367-375.

    Peakall R. & Smouse P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics. 28: 2537-2539.

    Perrier X. & Jacquemoud-Coller J.P. (2006). DARwin software v.6.0.021. Retrieved from http://darwin.cirad.fr/ on Sep 15, 2021.

    Poczai P., Varga I., Laos M., Cseh A., Bell N., Valkonen J.P.T. & Hyvönen J. (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods. 9(1): 6.

    Pritchard J.K., Stephens M. & Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics. 155(2): 945-959.

    Turchetto C., Mäder G., Cazé A.L.R. & Freitas L.B. (2018). Genetic variability and population structure of Passiflora contracta, a bat-pollinated species from a fragmented rainforest. Botanical Journal of the Linnean Society. 186(2): 247-258.

    Yan L., Ogutu C., Huang L., Wang X., Zhou H., Ly Y., Long Y., Dong Y. & Han Y. (2019). Genetic diversity and population structure of coffee germplasm collections in China revealed by ISSR markers. Plant Molecular Biology Reporter. 37(3): 204-213.

    Yan W., Li J., Zheng D., Friedman C. & Wang H. (2019). Analysis of genetic population structure and diversity in Mallotus oblongifoliususing ISSR and SRAP markers. PeerJ. 7: e7173-e7173.

    Zietkiewicz E., Rafalski A. & Labuda D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 20(2): 176-183.