Received: 18-05-2021
Accepted: 21-02-2022
DOI:
Views
Downloads
How to Cite:
Effect of Dietary Fucoidan Supplementation on Growth of Nile Tilapia (Oreochromis niloticus)Fingerlings and Improvement of Survival Rate of Fish when Infected with Aeromonas veronii
Keywords
Fucoidan, resistance, Aromonas veronii, tilapia
Abstract
The study was conducted to evaluate the effect of dietary fucoidan extracted from brown seaweed Sargassum swartziion growth, survival rate, feed conversion ratio (FCR), and disease resistance to Aeromonas veroniibacterium in Nile tilapia (Oreochromis niloticus) fingerlings. Fish (23.2 ± 2.7g) were fed the commercial feed (35%Pr) supplemented with fucoidan at various concentrations (0%, 0.05%, 0.1%, 0.5%) in triplicate for 6 weeks. The results have showed that fucoidan did not significantly affect (P >0.05) the growth, survival, and FCR during the feeding trial. At the end of nutritional trial, fish were infected with Aeromonas veroniiat dose of LD50 (7.82 ×104CFU/ml), fish were then monitored for 10 days, the mortality was daily recorded. After 10 days of challenge, the results showed that the survival rate was 76.6% and 80% for 0.1% and 0.5% fucoidan-fed fish, respectively, much higher than other groups (30% and 36.7% for Control and 0.05% fucoidan-fed fish, respectively) (P < 0.05). In conclusion, dietary fucoidan extracted from brown seaweed Sargassum swartziiat 0.1 and 0.5% enhanced the resistance of tilapia fingerlings against to Aeromonas veronii.
References
Azmai Mohammad Noor Amal, Koh C.B., Mohamad Nurliyana, Suhaiba M., Nor-Amalina Z., Santha S., Nadhirah Diyana, Yusof Mohd Termizi, Md Yasin Ina & Saad Mohd (2018). A case of natural co-infection of Tilapia Lake Virus and Aeromonas veronii in a Malaysian red hybrid tilapia (Oreochromis niloticus× O. mossambicus) farm experiencing high mortality. Aquaculture. 485. 10.1016/j.aquaculture.2017.11.019.
Cahyono Purbomartono, Alim Isnansetyo, Murwantoko & Triyanto (2019). Dietary Fucoidan from Padina boergesenii to Enhance Non-specific Immune of Catfish (Clarias sp.). Journal of Biological Sciences. 19: 173-180.
Dong H.T., Nguyen V.V., Le H.D., Sangsuriya P., Jitrakorn S., Saksmerprome V., Senapin S. & Rodkhum C. (2015). Naturally concurrent infections of bacterial and viral pathogens indisease outbreaks in cultured Nile tilapia (Oreochromis niloticus) farms. Aquaculture.448: 427-435. doi:10.1016/j.aquaculture. 2015.06.027
Dong H.T., Techatanakitarnan C., Jindakittikul P., Thaiprayoon A., Taengphu S., Charoensapsri, Khunrae P., Rattanarojpong T. & Senapin, S. (2017). Aeromonas jandaeiand Aeromonas veroniicaused disease and mortality in Nile tilapia, Oreochromis niloticus(L.). Journal of Fish Diseases, 40(10): 1395-1403.doi:10.1111/jfd. 12617
El-Boshy Mohamed. (2014). Dietary fucoidan enhance the non-specific immune response and disease resistance in African catfish, Clarias gariepinusimmunosuppressed by cadmium chloride. Veterinary Immunology and Immunopathology.162:168-173. https://doi.org/ 10.1016/j.vetimm.2014.10.001.
Gora A.H., Sahu N.P., Sahoo S., Rehman S., Dar S.A., Ahmad I. & Agarwal D. (2018). Effect of dietary Sargassum wightiiand its fucoidan-rich extract on growth, immunity, disease resistance and antimicrobial peptide gene expression in Labeo rohita. International Aquatic Research. 10(2): 115-131. doi:10.1007/s40071-018-0193-6
Hebatallah Ahmed Mahgoub (2018). Can Fucoidan Decrease the Mortalities Caused by Columnaris Disease in Nile Tilapia? World Journal of Agricultural Research. 6(1): 1-4. doi: 10.12691/wjar-6-1-1
Immanuel Grasian, Madasamy Sivagnanavelmurugan, Thangapandi Marudhupandi, Radhakrishnan Srinivasan & Palavesam Arunachalam (2012). The effect of fucoidan from Sargassum wightiion WSSV resistance and immune activity in shrimp Penaeus monodon(Fab). Fish & shellfish immunology. 32. 551-64. 10.1016/j.fsi. 2012.01.003.
Isnansetyo Alim, Fikriyah Amiqatul, Kasanah Noer & Murwantoko Murwantoko (2015). Non-specific immune potentiating activity of fucoidan from a tropical brown algae (Phaeophyceae), Sargassum cristaefoliumin tilapia (Oreochromis niloticus). Aquaculture International. 24. 10.1007/s10499-015-9938-z.
Khanzadeh M., Vazirzadeh A. & Farhadi A. (2020). Effect of Extract and Fucoidan of Sargassum sp.on Growth, biochemical, Immunity and antioxidant Parameters of Nile Tilapia (Oreochromis niloticus). Isfj Journal Article. 29(4) : 97-108. URL: http://isfj.ir/article-1-2259-en.html.
Madasamy Sivagnanavelmurugan, Theaddaeus Bergmans, Palavesam Arunachalam & Immanuel Grasian (2014). Dietary effect of Sargassum wightiifucoidan to enhance growth, prophenoloxidase gene expression of Penaeus monodonand immune resistance to Vibrio parahaemolyticus. Fish & shellfish immunology. 39. 10.1016/j.fsi.2014.05.037.
Mahgoub Hebatallah, El-Adl Mohamed, Ghanem Hanaa & Martyniuk Christopher (2020). The effect of fucoidan or potassium permanganate on growth performance, intestinal pathology, and antioxidant status in Nile tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry. 46. 10.1007/s10695-020-00858-w.
Mir Ishfaq, Sushila Ngairangbam, Bhat Irfan, Dar Showkat, Yousuf Jaffer, Muralidhar Ande & Karthireddy Syamala (2018). Fucoidan: A Sulphated Polysaccharide and its Bioactive Potential in Aquaculture. Aquaculture Times.4. 17-21.
Popma T. & Masser M. (1999). Tilapia: Life History and Biology. Southern regional aquaculture center Publ. 283: 4.
Raj Sundar, Swaminathan T. Raja, Dharmaratnam Arathi, Raja S., Ramraj D. & Lal Kuldeep (2019). Aeromonas veronii caused bilateral exophthalmia and mass mortality in cultured Nile tilapia, Oreochromis niloticus (L.) in India. Aquaculture. 512. 734278. 10.1016/j.aquaculture.2019.734278.
Ramazanov Z., Jimenez del Rio M. & Ziegenfuss T. (2003) Sulfated polysaccharides of brown seaweed Cystoseira canariensis bind to serum myostatin protein. Acta Physiol Pharmacol Bulg 27:101-106
Rani V., Jawahar Paulraj, Jeyashakila R. & Srinivasan Arasan (2020). Effect of Fucoidan of Brown Seaweeds on the Immuno-haematological Change and the Disease Resistance against Aeromonas hydrophila in Tilapia Oreochromis mossambicus. International Journal of Current Microbiology and Applied Sciences. 9. 636-649. 10.20546/ ijcmas.2020.908.071.
Sony N.M., Ishikawa M., Hossain M.S., Koshio S. & Yokoyama S. (2018). The effect of dietary fucoidan on growth, immune functions, blood characteristics and oxidative stress resistance of juvenile red sea bream, Pagrus major. Fish Physiology and Biochemistry. doi:10.1007/ s10695-018-0575-0
Thangapandi Marudhupandi & Inbakandan Dhinakarasamy (2015). Polysaccharides in Aquatic Disease Management. Fisheries and Aquaculture Journal. 6: 1000135. 10.4172/2150-3508.1000135.
Tuller J., De Santis C., & Jerry D.R. (2012). Dietary influence of Fucoidan supplementation on growth of Lates calcarifer (Bloch). Aquaculture Research. 45(4): 749-754. doi:10.1111/are.12029
Wang Y., Xing M., Cao Q., Ji A., Liang H. & Song S. (2019). Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Marine Drugs. 17(3): 183. doi:10.3390/md17030183.
Wijesinghe W.A.J.P. & Jeon Y.J. (2012). Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 88: 13-20.
Yang Qing, Yang Rui, Li Ming, Zhou Qi-Cun, Liang Xiongpei & Elmada Zacharia (2014). Effects of dietary fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco). Fish & shellfish immunology. 41: 264-270. doi:10.1016/j.fsi. 2014.09.003.