Determination of Residential Land Price using Regression Model in Nghi Tan Ward, Cua Lo Town, Nghe An Province

Received: 18-05-2021

Accepted: 19-07-2021

DOI:

Views

37

Downloads

20

Section:

TÀI NGUYÊN VÀ MÔI TRƯỜNG

How to Cite:

Ha, P., Quan, N., & Trung, N. (2024). Determination of Residential Land Price using Regression Model in Nghi Tan Ward, Cua Lo Town, Nghe An Province. Vietnam Journal of Agricultural Sciences, 19(9), 1168–1179. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/885

Determination of Residential Land Price using Regression Model in Nghi Tan Ward, Cua Lo Town, Nghe An Province

Pham Thi Ha (*) 1 , Nguyen Van Quan 2 , Nguyen Van Trung 3

  • 1 Viện Nông nghiệp và Tài nguyên, Đại học Vinh
  • 2 Khoa Quản lý đất đai, Học viện Nông nghiệp Việt Nam
  • 3 Khoa Trắc địa bản đồ và Quản lý đất đai, Đại học Mỏ - Địa chất
  • Keywords

    Residential land price, Regression model, Determination of land price, Nghi Tan ward

    Abstract


    The objective of this study is to build a regression model for application in determination of residential land price close to the market price. Determination of residential land price is an important tool to solve the problems of land price management, land financial management. Therefore, land management in general and land price management in particular, the determination of residential land price is always the top concern. This study used the method of land valuation using the regression model to determine the price of residential land in the study area; to help determine the land price close to the market price for an entire area or an area quickly and relatively accurately. 200 samples were collected in Nghi Tan ward, Cua Lo Town, Nghe An province to build a regression model of residential land price. From the regression model, a series of residential land prices were determined, thereby a map of land prices in market prices was constructed to serve the development of land price policies and the state management ofland prices.

    References

    Barbara G. Tabachnick & Linda S. Fidell (2013). Using multivariate statistics. Boston: Pearson Education.

    Benjamin J.D., Guttery R.S. & Sirmans C.F. (2004). Mass Appraisal: An introduction to multiple regression analysis for real estate valuation. Journal of Real Estate Practice and Education. 7(1): 65-77.

    Brukðtaitienë D.(2011). Application of mass appraisal models. Vilnius Gediminas Technical University, Saulëtekio al. 11, LT-2040 Vilnius, Lithuania.

    Demetriou D.(2016). The assessment of land valuation in land consolidation schemes: The need for a new land valuation framework Land Use Policy. 54: 487-498.

    Nguyễn Quỳnh Hoa & Nguyễn Hồng Dương (2016). Xây dựng mô hình thẩm định giá đất hàng loạt cho địa bàn quận Gò Vấp, thành phố Hồ Chí Minh. Tạp chí Phát triển Kinh tế. 26(3): 82-103.

    Ramu Ramanathan (2002). Introductory Econometrics with Applications. Harcourt College Publishers.

    Selim H. (2009). Determinants of house prices in Turkey: Hedonic regression versus artificial neural network. Expert Systems with Applications. 36(2): 2843-2852.

    Trần Thanh Hùng (2016). Nghiên cứu xây dựng hệ thống thông tin hỗ trợ định giá đất ứng dụng công nghệ WEBGIS mã nguồn mở. Đề tài khoa học và công nghệ cấp bộ.

    UBND thị xã Cửa Lò (2018). Số liệu thống kê kiểm kê diện tích đất đai phường Nghi Tân năm 2018.