Structural Analysis and Data Mining of the Expression Profiles of Genes encoding TCP Transcription Factors in Pummelo (Citrus grandis)

Received: 10-03-2020

Accepted: 04-05-2020

DOI:

Views

2

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Hà C., Huòng N., Huong, B., Hòng L., Quỳnh L., Thu, P., & Lọc N. (2024). Structural Analysis and Data Mining of the Expression Profiles of Genes encoding TCP Transcription Factors in Pummelo (Citrus grandis). Vietnam Journal of Agricultural Sciences, 18(4), 289–296. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/660

Structural Analysis and Data Mining of the Expression Profiles of Genes encoding TCP Transcription Factors in Pummelo (Citrus grandis)

Chu Dúc Hà (*) 1 , Nguyẽn Thu Huòng 1, 2 , Bùi Thị Thu Huong 2 , La Viẹt Hòng 3 , Le Thị Ngọc Quỳnh 4 , Phạm Phuong Thu 3 , Nguyẽn Van Lọc 5

  • 1 Viện Di truyền Nông nghiệp, Viện Khoa học Nông nghiệp Việt Nam
  • 2 Khoa Công nghệ sinh học, Học viện Nông nghiệp Việt Nam
  • 3 Khoa Sinh - Kỹ thuật Nông nghiệp, Đại học Sư phạm Hà Nội 2
  • 4 Khoa Hóa và Môi trường, Đại học Thủy lợi
  • 5 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • Keywords

    Citrus grandis, transcription factor, TCP, structure, expression profile

    Abstract


    TCP transcription factor is considered as the key regulatory proteins, which are demonstrated to involve in the growth and development of plants. However, the information of TCP in pummelo (Citrus grandis) has been still lacking.The aims of this study were to identify and characterize the basic features of TCPs in pummelo. As the results,a total of 21 genes encoding TCP havebeen identified in the pummelo's genome. Based on various bioinformatics tools, the physic-chemical properties of TCP family in pummelo have beenfound to be very variable, hydrophilic, as confirmed in other plants-species. The majority of CgTCP genes consist ofonly one exon. We have also found that TCP in pummelo could classify into 3 plant-specific groups, including PCF1, CIN and CYC/TB1. Of our interest, according to the transcriptome atlas of the sweet orange (C. sinensis), we demonstrated that the homologous gene of CgTCP02 is strongly induced in leaf, flower and fruit. Taken together, our results could get insight into the TCP family in pummeloand initially evaluate the expression profiles of TCP-coding genes in the major organs, and thus, provide the candidate genes for further functional characterizations.

    References

    Chai W., Jiang P., Huang G., Jiang H.& Li X. (2017). Identification and expression profiling analysis of TCP family genes involved in growth and development inmaize. Physiol Mol Biol Plants.23(4):779-791.

    Chu Đức Hà, La Việt Hồng, Trần Thị Thu Hiền, Phạm Phương Thu, Trần Danh Sửu&Phạm Thị Lý Thu (2018). Nghiên cứu xác định và phân tích cấu trúc của họ gen mã hóa yếu tố phiên mã TCP ở cam ngọt (Citrus sinensis) bằng công cụ tin sinh học. Hội nghị Công nghệ Sinh học toàn quốc năm 2018. tr. 34-39.

    Chu Đức Hà, Nguyễn Thị Duyên, La Việt Hồng, Phạm Phương Thu, Trần Thị Phương Liên, Lê Hùng Lĩnh, Phạm Xuân Hội&Lê Tiến Dũng (2019). Phân tích đặc tính của nhân tố phiên mã TCP liên quan đến đáp ứng bất lợi ở sâm Hàn Quốc (Panax ginseng). Hội nghị Công nghệ Sinh học toàn quốc năm 2019. tr. 6-10.

    Danisman S. (2016). TCP transcription factors at the interface between environmental challenges and the plant's growth responses. Frontier Plant Sci.7:1930.

    Danisman S., van Dijk A.D., Bimbo A., van der Wal F., Hennig L., de Folter S., Angenent G.C.&Immink RG. (2013). Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot.64(18):5673-5685.

    El-Gebali S.,Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., SalazarG. A., Smart A., Sonnhammer E.L.L., Hirsh L., PaladinL., Piovesan D., Tosatto S.C.E.& Finn R.D. (2018). The Pfam protein families database in 2019. Nucleic Acids Res. 47(Database issue): D427-D432.

    Feng Z.J., Xu S.C., Liu N., Zhang G.W., Hu Q.Z.&Gong Y.M. (2018). Soybean TCP transcription factors: Evolution, classification, protein interaction and stress and hormone responsiveness. Plant Physiol Biochem.127:129-142.

    Francis A., Dhaka N., Bakshi M., Jung K.H., Sharma M.K.&Sharma R. (2016). Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum. Sci Rep.6:38488.

    Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D.&Bairoch A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res.31(13):3784-3788.

    Hall T.A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser.41:95-98.

    Hu B., Jin J., Guo A. Y., Zhang H., Luo J.& GaoG. (2015). GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics. 31(8):1296-1297.

    Kumar S., Stecher G.& Tamura K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 forbigger datasets. Mol Biol Evol.33(7):1870-1874.

    Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I. M.,Wilm A., Lopez R., Thompson J.D., Gibson T.J.&Higgins D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics.23(21):2947-2948.

    Lei N., Yu X., Li S., Zeng C., Zou L., Liao W.&Peng M. (2017). Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Sci Rep.7(1):10016.

    Manassero N.G., Viola I.L., Welchen E. & Gonzalez D.H. (2013). TCP transcription factors: Architectures of plant form. Biomol concepts.4(2): 111-127.

    Martín-Trillo M.&Cubas P. (2010). TCP genes: a family snapshot ten years later. Trends Plant Sci.15(1):31-39.

    Nicolas M.&Cubas P. (2016). TCP factors: new kids on the signaling block. Curr Opin Plant Biol.33:33-41.

    Parapunova V., Busscher M., Busscher-Lange J., Lammers M., Karlova R., Bovy A.G., Angenent G.C.&de Maagd R.A. (2014). Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol.14:157.

    Shi P., Guy K.M., WuW., Fang B., Yang J., Zhang M.&Hu Z. (2016). Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus. BMC Plant Biol. 16:85.

    Tran C.D., Chu H.D., Nguyen K.H., Watanabe Y., La H.V., Tran K.D.&Tran L.S.P. (2018). Genome-wide identification of the TCP transcription factor family in chickpea (Cicer arietinumL.) and their transcriptional responses to dehydration and exogenous abscisic acidtreatments. J Plant Growth Reg.37(4):1286-1299.

    Wang X., Xu Y., Zhang S., Cao L., Huang Y., Cheng J., Wu G., Tian S., Chen C., Liu Y., Yu H., Yang X., Lan H., Wang N., Wang L., Xu J., Jiang X., Xie Z., Tan M., Larkin R.M., Chen L.L., Ma B. G., Ruan Y., Deng X.&Xu Q. (2017). Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet.49(5):765-772.

    Xu Q., Chen L.L., Ruan X., Chen D., Zhu A., Chen C., Bertrand D., Jiao W.B., Hao B.H., Lyon M.P., Chen J., Gao S., Xing F., Lan H., Chang J.W., Ge X., Lei Y., Hu Q., Miao Y., Wang L., Xiao S., Biswas M.K., Zeng W.,Guo F., Cao H., Yang X., Xu X.W., Cheng Y.J., Xu J., Liu J.H., Luo O.J., Tang Z., Guo W.W., Kuang H., Zhang H.Y., Roose M.L., Nagarajan N., Deng X.X.&Ruan Y. (2013). The draft genome of sweet orange (Citrus sinensis). Nat Genet.45(1):59-66.

    Yao X., Ma H., Wang J.& Zhang D. (2007). Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thalianaand Oryza sativa.J Integr Plant Biol.49(6):885-897.