Gross and Microscopic Morphology of Salt Glands in Sea Duck 15 Dai Xuyen

Received: 11-06-2018

Accepted: 11-03-2019

DOI:

Views

2

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Anh, V., Duy, N., Tieu, H., Phuong, N., & Tiep, N. (2024). Gross and Microscopic Morphology of Salt Glands in Sea Duck 15 Dai Xuyen. Vietnam Journal of Agricultural Sciences, 16(12), 1059–1067. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/521

Gross and Microscopic Morphology of Salt Glands in Sea Duck 15 Dai Xuyen

Vuong Lan Anh (*) 1 , Nguyen Van Duy 1 , Hoang Van Tieu 2 , Nguyen Thi Minh Phuong 3 , Nguyen Ba Tiep 4, 5

  • 1 Trung tâm nghiên cứu vịt Đại Xuyên
  • 2 Hiệp hội chăn nuôi gia cầm Việt Nam
  • 3 Khoa Thú y,Học viện Nông nghiệp Việt Nam
  • 4 Khoa Thú y, Học viện Nông nghiệp Việt Nam
  • 5 Học viên cao học, Khoa Thú y,Học viện Nông nghiệp Việt Nam
  • Keywords

    adaptation, gross morphology, microscopic structure, salt gland, seaduck

    Abstract


    Gross and histological structures of the salt glands of the sea duck 15 (VB15) and the F1(VB15 x mallards) ducklingswere investigated in this study. The ducks hadbilateral crescent salt glands under the skin in the supraorbital depression of the frontal bone. The measurements of the gland length, width and weight showed that the gland development wasfaster from post-hatching to 6 weeks of age. There were no differences of the three values among three duck groups raised in fresh water. The salt glandsof VB15 raised in sea water had higher weight than that of the counterparts in fresh water. The glands of VB15 consistedof concentric polygonal lobes arranged in rows and separated by interlobular connective tissuesthat contain vasculature system. Each lobe hadbranched striated secretory tubules lining with single layer of cuboidal cells. Connective tissue was underneath the cuboidal cellepithelia. Thebranchedductsopenedinto the central canal that drain in a main duct leads to the anterior of the nasal cavity. This is the first study on salt glands of Vietnam marine animals, especially of VB15breedand can be considered as the basisfor further studies on age-dependent functions of the salt glands and theoptimal age of VB15 for shifting from fresh water to salty water as well as appropriate salinity for VB15.

    References

    Abel J.H., JR. & Ellis R.A. (1966). Histochemical and electron microscopic observations on the salt secreting lacrymal glands of marine turtles. Amer. J. Anat., 118: 337.

    Albrecht C.B. (1950). Toxicity of sea water in mammals. American Journal of Physiology-Legacy, 163(2): 379-385.

    Ballantyne B. & Wood W.G. (1967). A histochemical and biochemical investigation ot/-glucuronidase activity in the quiescent and secreting supra-orbital gland of Anas domesticus. J. Physiol., 191: 89.

    Bellrose F.C. (1980). Ducks, geese and swans of North America. 3rd ed. Stackpole Books, Harris-burg, PA. 540 pp.

    Braun E.J. (1998). Comparative renal function in reptiles, birds, and mammals (1998). Seminars in Avian and Exotic Pet Medicine, 7(2): 62-71.

    Ernst S.A. & Ellis R.A. (1969). The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress. J Cell Biol., 40(2): 305-321.

    Gregory G.B. & Thomas D.N. (1991). Salt tolerances in American black ducks, mallards, and their F1-Hybrids. The Auk, 108: 89-98.

    Holmes W.N a&Phillips J.G. (1985). The avian salt gland. Biological Review https://doi.org/10.1111/j.1469-185X.1985.tb00715.

    Hughes M.R. (1983). Total body water and its turnover in male and female wild Mallard Ducks, Anas platyrhynchos, acclimated to fresh water and sea water. In: Davey, (Ed.). Proceed-ings of the 15th International Union of Physiological Sciences, Sydney, Australia, 214 pp.

    Hughes MR (2003). Regulation of salt gland, gut and kidney interactions. Comp Biochem Physiol A Mol Integr Physiol., 136(3): 507-24.

    Nguyễn Thị Hồng Điệp, Võ Quang Minh, Phan Kiều Diễm, Nguyễn Văn Tao (2015). Đánh giá tác động của biến đổi khí hậu lên hiện trạng canh tác lúa vùng ven biển đồng bằng sông Cửu Long theokịch bản biến đổi khí hậu. Tap chí khoa học Trường đại học Cần Thơ, số chuyên đề: Môi trường và Biến đổi khí hậu, tr. 167-173.

    Nguyễn Văn Hoàng, Nguyễn Thành Công, Ứng Quốc Khang, Lê Quang Đạo (2014). Nghiên cứu xây dựng mô hình đánh giá dự báo xâm nhập mặn nước sông Trà Lý. Tạp chí các khoa học về trái đất, 36(1): 21-30.

    Peaker M. and Linzell J. L. (1975). Salt glands in birds and reptiles. Cambridge University Press, Cambridge, UK, 307 pp.

    Phạm Sĩ Hoàn, Nguyễn Chí Công, Lê Đình Mầu (2013). Đặc điểm khí tượng, thủy văn và động lực vùng biển vịnh Quy Nhơn. Tạp chí Khoa học và Công nghệ Biển, 13(1): 1-11

    Skoruppa M.K. & Woodin M.C. (2000). Impact of wintering Redhead ducks on pond water quality in southern Texas. In: Comin, F.A., Herrera-Silveira, J.A. & Ramirez-Ramirez, J. (Eds.). Limnology and aquatic birds: monitoring, modelling and management, pp. 31-41

    Tunnell J.W., JR. & Judd F.W. (Eds.) (2002). The Laguna Madre of Texas and Tamaulipas. Texas A&M University Press, College Station, TX. 346 pp.

    Vu D.T., Yamada T. & Ishidaira H. (2018). Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Science & Technology (in press) doi: 10.2166/wst.2018.038

    Vũ Duy Vĩnh, Katrijn Baetens, Patrick Luyten, Trần Anh Tú, Nguyễn Thị Kim Anh (2013). Ảnh hưởng của gió bề mặt đến phân bố độ mặn và hoàn lưu vùng ven bờ châu thổ sông Hồng. Tạp chí Khoa học và Công nghệ Biển, 13(1): 12-20.

    Woodin M.C. (1994) Use of saltwater and freshwater habitats by wintering Redheads in southern Texas. Hydrobiologia, pp. 279-280: 279-287.

    Woodin M.C., Michot T.C.&Lee M.C. (2008). Salt gland development in migratory redheads (Aythya Americana) in saline environments on the winter range, Gulf of Mexico, USA. Acta Zoologica Academiae Scientiarum Hungaricae, 54 (Suppl. 1): 251-264.