Biofilm Forming and Antibiotic Resistance of Biofilm Producing Staphylococcusspp.

Received: 01-10-2018

Accepted: 07-11-2018

DOI:

Views

2

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Giap, N., & Phuong, C. (2024). Biofilm Forming and Antibiotic Resistance of Biofilm Producing Staphylococcusspp. Vietnam Journal of Agricultural Sciences, 16(8), 744–752. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/492

Biofilm Forming and Antibiotic Resistance of Biofilm Producing Staphylococcusspp.

Nguyen Van Giap (*) 1 , Cao Thi Bich Phuong 1

  • 1 Khoa Thú y, Học viện Nông nghiệp Việt Nam
  • Keywords

    Bacteria, biofilm, antibiotic resistance

    Abstract


    This study was conducted to determine the biofilm formation and antibiotic resistance of the biofilm-forming Staphylococcusspp. By the application of microtiter plate test, a quantitative method, the biofilm formation of staphylococci was determined. It was found that 51.61% strains produced biofilms at strong, medium and weak levels. Study on the production of biofilm over time showed that the biofilm formation by staphylococci increased from 4 hours to 20 hours, and then decreased from 24 hours to 40 hours post innoculation in 96-wells plate. In terms of antibiotic resistance, the biofilm producing strains were able to survive under the concentrations of antibiotics of 10 to 100 times higher than the planktonic bacteria.

    References

    Almshawit H., I. Macreadie, D. Grando (2014). A simple and inexpensive device for biofilm analysis. J Microbiol Methods, 98: 59-63.

    Babra C., J.G. Tiwari, G. Pier, T.H. Thein, R. Sunagar, S. Sundareshan, S. Isloor, N.R. Hegde, S. de Wet, M. Deighton, J. Gibson, P. Costantino, J. Wetherall, T. Mukkur (2013). The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureusisolated from clinical bovine mastitis cases in Australia. Folia Microbiol (Praha),58: 469-474.

    Ceri H., M.E. Olson, C. Stremick, R.R. Read, D. Morck, A. Buret (1999). The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol,37: 1771-1776.

    Christensen G.D., W.A. Simpson, A.L. Bisno, E.H. Beachey (1982). Adherence of slime-producing strains of Staphylococcusepidermidis to smooth surfaces. Infection and Immunity, 37: 318-326.

    Costerton J.W., P.S. Stewart, E. P. Greenberg (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284: 1318-1322.

    Darwish S.F., H.A. Asfour (2013). Investigation of biofilm forming ability in Staphylococcicausing bovine mastitis using phenotypic and genotypic assays. Scientific World Journal, 5: 378-492.

    Donlan R.M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases,8(9): 881-890.

    Freeman D.J., F.R. Falkiner, C.T. Keane (1989). New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol, 42: 872-874.

    Hola V., F. Ruzicka, M. Votava (2006). The dynamics ofStaphylococcus epidermidis biofilm formation in relation to nutrition, temperature and time. Scripta Medica, 79: 169-174.

    Lê Văn Năm và Hoàng Triều (2016). Thuốc thú y và một số tồn tại trong quá trình sử dụng. Tạp chí Khoa học kỹ thuật Thú y, 23: 85-89.

    Mirani Z.A., M. Aziz, M.N. Khan, I. Lal, N.U. Hassan, and S.I. Khan (2013). Biofilm formation and dispersal of Staphylococcus aureusunder the influence of oxacillin. Microb. Pathog.,6: 66-72.

    Nguyễn Đức Hiền (2012). Tình hình nhiễm và mức độ kháng thuốc của Salmonellaspp. phân lập từ vịt và môi trường nuôi vịt tại thành phố Cần Thơ. Tạp chí Khoa học, 22: 1-7.

    Oliveira M., R. Bexiga, S.F. Nunes, C. Carneiro, L.M. Cavaco, F. Bernardo and C.L. Vilela (2006). Biofilm-forming ability profiling of Staphylococcus aureusand Staphylococcus epidermidismastitis isolates. Vet. Microbiol,118: 133-140.

    Paytubi S., P. Guirado, C. Balsalobre and C. Madrid (2014). An improved and versatile methodology to quantify biofilms formed on solid surfaces and exposed to the air-liquid interphase. J. Microbiol Methods, 103: 77-79.

    Stepanovic S., D. Vukovic, I. Dakic, B. Savic and M. Svabic-Vlahovic (2000).A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods, 40: 175-179.

    Stepanovic S., D. Vukovic, V. Hola, G. Di Bonaventura, S. Djukic, I. Cirkovic và F. Ruzicka (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115: 891-899.

    Stewart P.S. and M.J. Franklin (2008). Physiological heterogeneity in biofilms. Nat Rev Microbiol, 6: 199-210.

    The European Committee on Antimicrobial Susceptibility Testing (2017). Breakpoint tables for interpretation of MICs and zone diameters. http: //www.eucast.org, Version 7.0.

    Thornton R.B., P.J. Rigby, S.P. Wiertsema, P. Filion, J. Langlands, H.L. Coates, S. Vijayasekaran, A.D. Keil and P.C. Richmond (2011). Multi-species bacterial biofilm and intracellular infection in otitis media. BMC Pediatr, 11: p. 94.

    Urish K.L., P.W. DeMuth, B.W. Kwan, D.W. Craft, D. Ma, H. Haider, R.S. Tuan, T.K. Wood and C.M. Davis (2016). Antibiotic-tolerant Staphylococcus aureusbiofilm persists on arthroplasty materials. Clin Orthop Relat Res., 474: 1649-1656.

    Võ Thành Thìn (2011). Phân tích một số gen kháng kháng sinh của vikhuẩn E.coliphân lập từ lợn con mắc bệnh tiêu chảy. Tạp chí Khoa học kỹ thuật Thú y, 18: 20-25.

    Yang L., Y. Liu, H. Wu, N. Hoiby, S. Molin and Z.-j. Song (2011). Current understanding of multi-species biofilms. Int. J. Oral. Sci., 3: 74-81.