Effects of Different Salinity Levels of Irrigated Water on Growth, Yield and Proline Production of Rice Varieties (Oryza sativa L.) Grown on Salt-Affected Soil in Greenhouse

Received: 27-12-2017

Accepted: 09-10-2018

DOI:

Views

0

Downloads

0

Section:

TÀI NGUYÊN VÀ MÔI TRƯỜNG

How to Cite:

Khuong, N., Khanh, C., & Hung, N. (2024). Effects of Different Salinity Levels of Irrigated Water on Growth, Yield and Proline Production of Rice Varieties (Oryza sativa L.) Grown on Salt-Affected Soil in Greenhouse. Vietnam Journal of Agricultural Sciences, 16(7), 671–681. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/489

Effects of Different Salinity Levels of Irrigated Water on Growth, Yield and Proline Production of Rice Varieties (Oryza sativa L.) Grown on Salt-Affected Soil in Greenhouse

Nguyen Quoc Khuong (*) 1, 2, 3, 4 , Cao Nguyen Nguyen Khanh 5 , Ngo Ngoc Hung 6

  • 1 Trường Đại học An Giang,Trường Đại học Quốc gia thành phố Hồ Chí Minh
  • 2 Khoa Nông nghiệp và Sinh học ứng dụng, Trường Đại học Cần Thơ
  • 3 Khoa Nông nghiệp và Sinh học Ứng dụng, Trường Đại học Cần Thơ
  • 4 Khoa Nông nghiệp và Sinh học, Trường đại
  • 5 Học viên cao học Khoa học cây trồng, Đại học Cần Thơ
  • 6 Đại học Cần Thơ
  • Keywords

    Proline production, rice yield, saline-affected soil, saline water irrigation

    Abstract


    The objective of this study was to determine effect of salinity levels of irrigated water on growth, yield and proline production of rice varieties grown on saline-affected soil. A 5 x 4 factorial experiment including 5 rice varieties (Pokali - salt tolerant, IR28 - susceptible, OM5451, MTL547 and OM8017) and 4 salinity levels (0-control, 3, 4, và 5‰) was arranged in a randomized complete block design with four replicates in greenhouse. Results showed thatrice variety OM8017 gained the highest plant height, filled grain number per panicles, 1.000 grain weight, and rice yield, whereas rice variety MTL547 accumulated the highest proline production. Besides, saline irrigation water with a salt concentration of ≥3‰ decreased plant height, number of panicles, filled grain number per panicle, 1.000 grain weight, and rice yield. Rice yield was reduced by 20.0, 57.3 and 56.6% when irrigated with water containing 3, 4 and 5‰ salinity, respectively. Proline accumulation in rice stalk and sodium content in soil increased with increasing salinity levels.

    References

    Abrol I.P., Yadav J.S.P. and Massoud F.I. (1988). Salt-affected soils and their management (No. 39). FAO Soil Bulletin 39.

    Acosta-Motos J.R., OrtuñoM.F., Bernal-Vicente A., Diaz-Vivancos P., Sanchez-Blanco M.J. and Hernandez, J.A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agrono., 7(1): 18.

    Alam S., Huq S.I., Kawai S. and Islam A.(2007). Effects of applying calcium to coastal saline soils on growth and mineral nutrition of rice varieties. J. Plant Nutr.,25(3): 561-576.

    Ali M.A. (2015). Effect of soil salinity and exogenous proline application on rice growth, yield, biochemical and antioxidant enzyme activities. EC Agric., 2: 229-240.

    Aref F. (2013). Effect of saline irrigation water on yield and yield components of rice (Oryza sativaL.). Afr. J. Biotechnolo., 12(22): 3503-3513.

    Aref F. and Rad, H.E. (2012). Physiological characterization of rice under salinity stress during vegetative and reproductive stages. Indian J. Sci. Technol., 5(4): 2578-2586.

    Aslam M., Qureshi R.H. and Ahmed N. (1993). A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil, 150(1): 99-107.

    Bates L.S., Waldren R.P. and Teare I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39(1): 205-207.

    Bernstein L. (1964). Salt tolerance of plants. United States Department of Agriculture. Information Bulletin 283.

    Bhusan D., Das D.K., Hossain M., Murata Y. and Hoque M.A. (2016). Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of proline. Aust. J. Crop Sci., 10(1): 50-56.

    Bray R.H. and Kurtz L.T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59(1): 39-46.

    Chaves M.M., Flexas J. and Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot-London,103(4): 551-560.

    Chinnusamy V., Jagendorf A. and Zhu J.K. (2005). Understanding and improving salt tolerance in plants. Crop Sci., 45(2): 437-448.

    Fabre D., Siband P. and Dingkuhn M. (2005). Characterizing stress effects on rice grain development and filling using grain weight and size distribution. Field Crop. Res., 92(1): 11-16.

    Flowers T.J. and Flowers S.A. (2005). Why does salinity pose such a difficult problem for plant breeders? Agric. Water Manage, 78(1-2): 15-24.

    Hakim M.A., Juraimi A.S., Hanafi M.M., Ismail M.R., Selamat A., Rafii M.Y. and Latif M.A. (2014a). Biochemical and anatomical changes and yield reduction in rice (Oryza sativaL.) under varied salinity regimes. Biomed Res. Int., http://dx.doi. org/ 10.1155/2014/208584

    Hakim M.A., Juraimi A.S., Hanafi M.M., Ali E., Ismail M.R., Selamat A. and Karim S.R.(2014b). Effect of salt stress on morpho-physiology, vegetatative growth and yield of rice. J. Environ. Biol.,35(2): 317-326.

    Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J. and Ahmad A. (2012). Role of proline under changing environments: a review. Plant Signaling & Behavior, 7(11): 1456-1466.

    Hu Y. and Schmidhalter U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Pl. Nutr. Soil Sci., 168(4): 541-549.

    Hussain S., Khaliq A., Matloob A., Wahid M.A. and Afzal I. (2013). Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environ.,32(1): 36-43.

    Khan M.A., Ungar I.A. and Showalter A.M. (2000). Effects of salinity on growth water relations and iron accumulation in the subtropical perennial halophyte, Atriplex griffithii, vr. Stocksii. Annu. Bot., 85(2): 225-232.

    Lauchi A. and Grattan S.R. (2007). Plant growth and development under salinity stress. In: Advances in molecular breeding toward drought and salt tolerant crops. EDs.: Jenks M.A., Hasegawa P.M. and Jain S.M. Springer, Dordrecht, pp. 1-32.

    Lê Hồng Việt, Đỗ Bá Tân, Châu Minh Khôi (2015). Khảo sát hiện trạng xâm nhập mặn trong nước và đất sản xuất nông nghiệp tại huyện Long Mỹ, tỉnh Hậu Giang. Tạp chí Khoa học, Đại học Cần Thơ, 38: 48-54.

    Lê Xuân Thái, Trần Nhân Dũng(2013). Chọn lọc giống lúa chống chịu mặn ở đồng bằng sông Cửu Long. Tạp chí Khoa học, Đại học Cần Thơ, 28: 79-85.

    Mahmood A., Latif T. and Khan M.A. (2009). Effect of salinity on growth, yield and yield components in basmati rice germplasm. Pak. J. Bot., 41(6): 3035-3045.

    Mansour M.M.F., Salama K.H.A. and Al-Mutawa M.M. (2003). Transport proteins and salt tolerance in plants. Plant Sci., 164(6): 891-900.

    Mohammadi N.G., Singhb R.K., Arzanic A., Rezaiec A.M., Sabourid H. and Gregoriob. G.B. (2010) Evaluation of salinity tolerance in rice genotypes. Int. J. Plant Prod., 4(3): 199-207.

    Motamed M.K., Asadi R., Razaei M. and Amiri E. (2008). Responsse of high yielding rice varieties to NaCl salinity in greenhouse circumstances. Afr. J. Biotechnol., 7: 3866-3873.

    Munns R. and Tester M. (2008).Mechanisms of salinity tolerance. Ann. Rev. Plant Biol., 59: 651-681.

    Mustafa Z., Pervez M.A., Ayyub C.M., Matloob A., Khaliq A., Hussain S., Ihsan M.Z. and Butt M. (2014). Morpho-physiological characterization of chilli genotypes under NaCl salinity. Soil Environ.,33(2): 133-141.

    Page L., Miller R.H. and Keeney R.D. (1982). Methods for Soils Analysis, Part 2: Chemical and Microbial properties, 2ndedition. American Society of Agronomy Incorporation. USA.

    Perez-Alfocea F., Balibrea M.E., Santa Cruz A. and Estan M.T. (1996). Agronomic and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil, 180(2): 251-257.

    Phạm Thị Phấn, Lê Xuân Thái, Lê Thu Thủy, Ông Huỳnh Nguyệt Ánh. (2010).Chọn tạo giống lúa chất lượng cao cho đồng bằng sông Cửu Longgiai đoạn 2006-2008. Tạp chí Khoa học, Đại học Cần Thơ, 13: 246-254.

    Quan Thị ái Liên, Võ Công Thành, Nguyễn Thị Huyền Nhung (2012). Đánh giá khả năng chịu mặn và phẩm chất của giống lúa sỏi, một bụi hồng và nàng quớt biển. Tạp chí Khoa học, Đại học Cần Thơ, 24a: 281-289.

    Rahman A., Nahar K., Al Mahmud J., Hasanuzzaman M., Hossain M.S. and Fujita M. (2017). Salt Stress Tolerance in Rice: Emerging Role of Exogenous Phytoprotectants. In Advances in International Rice Research. Jin Quan Li, IntechOpen, pp. 139-174.

    Robinson G.W. (1922). A new method for the mechanical analysis of soils and other dispersions. J. Agric. Sci., 12(3): 306-321.

    Shabala S. (2013). Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot-London.,112(7): 1209-1221

    Shereen A., Mumtaz S., Raza S., Khan M.A. and Solangi S. (2005). Salinity effects on seedling growth and yield components of different inbred rice lines. Pak. J. Bot., 37(1): 131-139.

    Siddique A.B., Islam M.R., Hoque M.A., Hasan M.M., Rahman M.T. and Uddin M.M. (2015). Mitigation of salt stress by foliar application of proline in rice. Univers. J. Agr. Res., 3(3): 81-88.

    Summart J., Thanonkeo P., Panichajakul, S. Prathepha P. and McManus, M.T. (2010). Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. Afr. J. Biotechnolo., 9(2): 145-152.

    Trần Thị Cúc Hòa, Phạm Trung Nghĩa, Huỳnh Thị Phương Loan, Phạm Thị Hường, Hồ Thị Huỳnh Như, Đồng Thanh Liêm, Lê Thị Yến Hương, Nguyễn Trần Hải Bằng và Hà Minh Luân (2016). Nghiên cứu chọn tạo giống lúa giàu vichất dinh dưỡng có năng suất, chất lượng cao. Hội thảo Quốc gia về Khoa học Cây trồng lần thứ nhất, tr. 204-211.

    Viện Khoa học Thủy lợi Việt Nam (VAWR) (2016). Báo cáo xâm nhập mặn tại cửa sông vùng ven biển đồng bằng sông Cửu Long và đề xuất giải pháp chống hạn.

    Wu G.Q. and Wang S.M. (2012). Calcium regulates K+/Na+homeostasis in rice (Oryza sativaL.) under saline conditions. Plant Soil Environ., 58(3): 121-127.