Characteristics of Proteolytic Enzymes of Mud Crab (Scylla paramamosain)Larvae and Crablets

Received: 25-12-2017

Accepted: 09-05-2018

DOI:

Views

2

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Khoa, T., Mi, L., Viet, L., An, C., Huong, D., & Hai, T. (2024). Characteristics of Proteolytic Enzymes of Mud Crab (Scylla paramamosain)Larvae and Crablets. Vietnam Journal of Agricultural Sciences, 16(3), 215–222. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/436

Characteristics of Proteolytic Enzymes of Mud Crab (Scylla paramamosain)Larvae and Crablets

Tran Nguyen Duy Khoa (*) 1 , Ly Thi Yen Mi 1 , Le Quoc Viet 1 , Cao My An 1 , Do Thi Thanh Huong 1 , Tran Ngoc Hai 1

  • 1 Khoa Thủy sản, Đại học Cần Thơ
  • Keywords

    Proteolytic enzymes, mud crab, Scylla paramamosain, larval development

    Abstract


    This study aimed to investigate the proteolytic enzyme activity of mud crab (Scylla paramamosain) larvae and crablets. Samples of crab larvae fed live feed (artemia) were collected at various stages from Zoae-1 to Crab 1. Protease, trypsin, chymotrypsin and pepsin activity were analysed during larval development stages. The results showed that protease and pepsin activity increased regularly (at 3,85 - 19,1 U/mg protein and 1,69 - 8,32 U/mg protein, respectively) during lavral stage while trypsin and chymotrypsin activity were low from Zoae-1 to Zoae-5, particularly strongly fluctuated at Zoae-5, Megalope, and Crab stage. The protein hydrolyzed enzymes (protease, trypsin, chymotrypsin and pepsin) started with very low activities at the early stages (Zoae-1 to Zoae-3) and increased significantly from Zoae-5 to crablet stage when the digestive system of mud crab completely developed. The findings indicated that the proteolytic enzyme activities of mud crab varied during the stages of larval development.

    References

    Alberts-Hubatsch H., Lee S. Y., Meynecke J. O., Diele K., Nordhaus I., and Wolff M. (2016). Life-history, movement, and habitat use of Scylla serrata (Decapoda, Portunidae): current knowledge and future challenges. Hydrobiologia, 763(1): 5-21.

    Amemiya C. T. and Gomez-Chiarri M. (2006). Comparative genomics in vertebrate evolution and development. Journal of Experimental Zoology, 305(9): 672-82.

    Andrés M., Gisbert E., Díaz M., Moyano F. J., Estévez A. and Rotllant G. (2010). Ontogenetic changes in digestive enzymatic capacities of the spider crab, Maja brachydactyla (Decapoda: Majidae). Journal of Experimental Marine Biology and Ecology, 389(1-2): 75-84.

    Biesiot P. M. and Capuzzo J. M. (1990). Changes in digestive enzyme activities during early development of the American lobster (Homams americanus, Milne Edwards). Journal of Experimental Marine Biology and Ecology, 136: 107-122.

    Bộ Nông nghiệp và Phát triển nông thôn (2009). Quy hoạch phát triển nuôi trồng thủy sản vùng Đồng bằng sông Cửu Long đến năm 2015, định hướng đến năm 2020. 226 trang.

    Boyd C.E. (1998). Pond water aeration systems Aquaculture Engineering, 18: 9-40.

    Dabrowski K. and Glogowski J. (1977). Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia, 54(2): 129-134.

    Hummel B. (1959). A modified spectrophotometric determination of Chymotrypsin, Trypsin, and Thrombin. Canadian Journal of Biochemistry and Physiology, 37(2): 1393-1399.

    Jones D. A., Kamarudin M. S. and Vay L. Le. (1993). ThePotential for Replacement of Live Feeds in Larval Culture. Journal of the World Aquaculture Society, 24(2): 199-210.

    Kolkovski S., Tandler A., Kissil G. W. and Gertler A. (1993). The effect of dietary exogenous digestive enzymes on ingestion, assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae. Fish Physiology and Biochemistry, 12(3): 203-209.

    Kumlu M. and Jones D. A. (1995). The effect of live and artificial diets on growth, survival, and trypsin activity in larvae of Penaeus indicus. Journal of the World Aquaculture Society, 26(4): 406-415.

    Li F. and Li S. (1998). Studies on the hepatopancreas of larval Scylla serrata. Oceanol. Limnol. Sin/Haiyang Yu Huzhao, 29: 29-34.

    Lý Văn Khánh, Võ Nam Sơn, Châu Tài Tảo và Trần Ngọc Hải (2015). Ảnh hưởng của độ kiềm đến tỷ lệ biến thái và tỷ lệ sống của ấu trùng cua (Scylla paramamosain). Tạp chí Khoa học, Trường đại học Cần Thơ. Phần Nông nghiệp, Thủy sản và Công nghệ sinh học, 38: 61-65.

    Saborowski R., Thatje S., Calcagno J. A., Lovrich G. A., and Anger K. (2006). Digestive enzymes in the ontogenetic stages of the southern king crab, Lithodes santolla. Marine Biology, 149(4): 865-873.

    Serrano A. E. (2012). Ontogeny of endogenous and exogenous amylase and total protease activities in mud crab, Scylla serratalarvae fed live food, 2(5): 1578-1584.

    Serrano A. E. (2015). Properties of chymotrypsin-like enzyme in the mudcrab Scylla serrata, brine shrimp Artemia salinaand rotifer Brachionus plicatilis, 7(9): 66-73.

    Serrano A. E., and Traifalgar R. F. (2012). Ontogeny and induction of digestive enzymes in Scylla serrata larvae fed live or artificial feeds or their combination. AACL Bioflux, 5(3): 101-111.

    Suzer C., Kamaci H. O., Coban D., Saka S., Firat K., Ozkara B. and Ozkara A. (2007). Digestive enzyme activity of the red porgy (Pagrus pagrusL.) during larval development under culture conditions. Aquaculture Research, 38(16): 1778-1785.

    Pavasovic M., Richardson N. A., Anderson A. J., Mann D. and Mather P. B. (2004). Effect of pH, temperature and diet on digestive enzyme profiles in the mud crab, Scylla serrata. Aquaculture, 242(1-4): 641-654.

    Pullin R. S. V., Eknath A. (1991). Biotechnology in aquaculture. Proc Sec Asia-Pacific Biotechnology Congress. Ilag L. L., Raymundo A. K. (Eds.), The Phil Soc Microbiol, pp. 19-27.

    Trần Ngọc Hải và Nguyễn Thanh Phương (2009). Hiện trạng kỹ thuật và hiệu quả kinh tế của các trại sản xuất giống cua biển ở Đồng bằng sông Cửu Long. Tạp chí Khoa học, Trường đại học Cần Thơ, 12: 279-288.

    Tseng S. C. G., Jarvinen M. J., Nelson W. G., Huang J-W, Woodcock-Mitchell J., and Sun T.-T. (1982). Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell, 30: 361-372.

    Wormhoudt A. Van, Ceccaldi H. J. and Martin M. (France). Station Marine d’Endoume, B. J. (Ecole P. des H. E. (1980). Adaptation of the level of hepatopancreatic digestive enzymes in Palaemon serratus(Crustacea, Decapoda) to the composition of experimental diets. Aquaculture (Netherlands), 59: 23-34.

    Worthington T.M. (1982). Enzyme and Related Biochemicals. Biochemical Products Division, Worthington Diagnostic System, Freehold, NJ, USA, pp. 215-226.