Effect of Calcium and Salicylic Acid on Growth of Yardlong Bean under Salt Stress Condition

Received: 20-02-2017

Accepted: 19-06-2017

DOI:

Views

2

Downloads

0

Section:

NÔNG HỌC

How to Cite:

Dung, N., & Tuan, T. (2024). Effect of Calcium and Salicylic Acid on Growth of Yardlong Bean under Salt Stress Condition. Vietnam Journal of Agricultural Sciences, 15(6), 728–737. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/409

Effect of Calcium and Salicylic Acid on Growth of Yardlong Bean under Salt Stress Condition

Nguyen Thi Phuong Dung (*) 1 , Tran Anh Tuan 1

  • 1 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • Keywords

    Cowpea, Ca2+, SA, hydrogen peroxide, malondialdehyde, proline

    Abstract


    The aim of this study was to determine the effect of exogenous application of salicylic acid (SA 0.25 mM) and calcium nitrate (Ca(NO3)250 mM), singly or in combination, on plant growth, photosynthetic capacity, and some stress markers of yardlong bean plants exposed to salt stress (0.3% NaCl). Application of 0.3% NaCl reduced plant growth, total chlorophylland carotenoid content, and chlorophyll fluorescent (Fv/Fm). Exogenous application of SA or Ca2+alone alleviated the level of proline content, saturation of water shortage, hydrogen peroxide (H2O2), ion leakeageandmalondialdehyde (MDA) in the presence of NaCl. Nevertheless, the best results in growth of stemsand leaves, photosynthetic pigment concentrations, and some stress markers were observedin response to the combined SA + Ca2+treatment, except accumulation of dry matterand ion leakeage. Our results suggestedthat Ca2+and SA may interact to reduce the stress experienced by the plantsin the presence of NaCl.

    References

    Mai Văn Chung (2013). Sử dụng chất kích kháng nguồn gốc hormon trong phòng trừ sâu hại cây trồng. Tạp chí Khoa học - Công nghệ Nghệ An, 8: 25-27.

    Nguyễn Văn Bo, Nguyễn Thanh Tường, Nguyễn Bảo Vệ và Ngô Ngọc Hưng (2011). Ảnh hưởng của canxi đến khả năng sản sinh proline và sinh trưởng của cây lúa trên đất nhiễm mặn. Tạp chí Khoa học, Trường Đại học Cần Thơ, 18b: 203-211.

    Nguyễn Thị Phương Dung, Đào Thị Thủy, Trần Thị Thanh Huyền, Trần Anh Tuấn (2016). Một số chỉ tiêu sinh trưởng và giải phẫu của cây đậu đũa dưới tác động của salicylic acid trong điều kiện mặn. Báo cáo Khoa học về nghiên cứu và giảng dạy sinh học ở Việt Nam, Hội nghị Khoa học Toàn quốc lần thứ hai, Nhà xuất bản Đại học Quốc gia Hà Nội, tr. 170-180.

    Nguyễn Thị Phương Dung, Trần Anh Tuấn (2016). Ảnh hưởng của salicylic acid đến sinh trưởng của cây con dưa chuột trong điều kiện hạn. Tạp chí Khoa học và Phát triển, 14(8): 1162-1170.

    Arnon. D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris, Plant Physiology, 24(1): 1-15.

    Bates L. B., Waldren R. P., Teare I. D (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.

    Dong, C.J., X.L. Wang, Q.M. Shang (2011). Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scientia horticulturae, 129(4): 629-636.

    Dionisio-Sese M.L., Tobita S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Scie., 135: 1-9.

    Feagley, S. E., L. B. Fenn. (1998). Using Soluble Calcium to Stimulate Plant Growth. Texas Agricultural Extension Service. The Texas A&M University System.

    Gill, S. S. and N. Tuteja (2010). Polyamines and abiotic stress tolerance in plants. Journal Plant signal and behavior, 1: 26-33.

    Hayat Q., S.Hayat , M. Irfan , A. Ahmad (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68: 14-25.

    Heath R.L. and Packer L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125: 189-198.

    Jessup, W., R. T. Dean, J. M. Gebick (1994). Iodometric determination of hydroperoxides in lipids and proteins. Methods in Enzymology, 233: 289-303.

    Jiang Y., B Huang (2001). Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool‐season grasses. Journal of Experimental Botany, 52(355): 341-349.

    Katsuhara, M., T. Otsuka, B. Ezaki (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Science, 169(2): 369-373.

    Kaya, C., B. E. Ak, D. Higgs and B. Murillo-Amador (2002). Influence of foliar-applied calcium nitrate on strawberry plants grown under salt-stressed conditions. Australian Journal of Experimental Agriculture, 42(5): 631-636.

    Khan W., Prjrithivira B., Smith A. (2003). Photosynthetic responses of corn and soybean tofoliar application of salicylates. Journal of Plant Physiology, 160(5): 485-492.

    Manaa, A., E. Gharbi, H. Mimounia, S. Wastia, S. Aschi-Smitia, S. Luttsb, H. B. Ahmeda (2014). Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivar. South African Journal of Botany, 95: 32-39.

    Misra, N., P. Saxena (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177(3): 18 -189.

    Munns, R. and M. Tester (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59: 1-812.

    Murillo-Amadora, B., H. G. Jonesb, C.Kayac, R. L. Aguilara, J.L.García-Hernándeza, E. T. Diégueza, N.Y. Á. Serranod, E. R.Puentee (2006). Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environmental and Experimental Botany, 58: 188-196.

    Pottosin, I., A. M. Velarde-Buendía, J. Bose, I. Zepeda-Jazo, S. Shabala, O. Dobrovinskaya (2014). Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. Journal of Experimental Botany, 65(5): 1271-1283.

    Qadir, M., E. Quillérou, V. Nangia, G. Murtaza, M. Singh, R.J. Thomas, P. Drechsel and A.D. Noble (2014). Economics of salt-induced land degradation and restoration. Nat Resour Forum, 38: 282-295.

    Rady, M. M. and G.F. Mohamed (2015). Modulation of salt stress effects on the growth, physiochemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Scientia Horticulturae, 193: 105-113.

    Richardson A. D., Shane P. Duigan and Graeme P. Berlyn (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153: 185-194.

    Saxena, I., S. Srikanth and Z. Chen (2016). Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. Frontiers in Plant Science, 7: 57.

    Shabala, S., Demidchik, V., Shabala, L., Cuin, T.A., Smith, S.J., Miller, A.J., Davies, J.M., Newman, I.A. (2006). Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ permeable channels. Plant Physiology, 141: 1653-1665.

    Shakara, M., M. Yaseena, R. Mahmoodb, I. Ahmad (2016). Calcium carbide induced ethylene modulate biochemical profile of Cucumis sativus at seed germination stage to alleviate salt stress. Scientia Horticulturae, 213: 179-185.

    Shi, Q., Z. Bao, Z. Zhu, Q. Ying, Q. Qian (2006). Effects of Different Treatments of Salicylic Acid on Heat Tolerance, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in Seedlings of Cucumis sativa L. Plant Growth Regulation, 48(2): 127- 135.

    Tester, M. and R. Davenport (2003). Na+ Tolerance and Na+ Transport in Higher Plants. Annals of Botany, 91(5): 503-527.

    Tuteja, N. and S. Mahajan (2007). Calcium Signaling Network in Plants. Plant Signaling & Behavior, Review, 2: 79-85.

    Uddling, J., J.Gelang-Alfredsson, K. Piikki and H. Pleijel (2007). Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 91(1): 37-46.

    Uozumi, N. and Julian I. Schroeder (2010). Ion Channels and Plant Stress: Past, Present, and Future. Springer-Verlag Berlin Heidelberg.

    Wasti, S., H. Mimouni, S. Smiti, E. Zid, and H. B. Ahmed (2012). Enhanced Salt Tolerance of Tomatoes by Exogenous Salicylic Acid Applied Through Rooting Medium. A Journal of Integrative Biology, 16(4): 200-207.

    Zhu J.K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biolog, 6(5): 441-445.