Static and Vibration Analysis of Functionally Graded Plates Using TheSimple Higher Order Shear Deformation Theory (S-HSDT)

Received: 22-12-2014

Accepted: 30-07-2015

DOI:

Views

2

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Huan, D., Lu, L., Tu, T., & Tham, V. (2024). Static and Vibration Analysis of Functionally Graded Plates Using TheSimple Higher Order Shear Deformation Theory (S-HSDT). Vietnam Journal of Agricultural Sciences, 13(5), 216. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/216

Static and Vibration Analysis of Functionally Graded Plates Using TheSimple Higher Order Shear Deformation Theory (S-HSDT)

Duong Thanh Huan (*) 1, 2 , Le Minh Lu 2 , Tran Minh Tu 3 , Vu Van Tham 3

  • 1 Khoa Xây dựng Dân dụng và Công nghiệp, Trường Đại học Xây dựng
  • 2 Khoa Cơ Điện, Học viện Nông nghiệp Việt Nam
  • 3 Khoa Xây dựng dân dụng và Công nghiệp, Trường Đại học Xây dựng
  • Keywords

    Static analysis, vibration analysis, power-law functionally graded plate, shear deformation plate theory

    Abstract


    This paper used the simple higher order shear deformation theory (S-HSDT) to analyse the static and free vibration of simply supported (diaphragm), elastic functionally graded (FG), rectangular, plates. Functionally graded materials (FGMs), although heterogeneous are idealized as continua with their mechanical properties changing smoothly with respect to the spatial coordinates. Poisson’s ratio is assumed to be constant, but their Young’s moduli and densities vary continuously in the thickness direction according to the volume fraction of constituents, which is mathematically modelled as power law function. The equations of motion are obtained using Hamilton’s principle employing S-HSDT. Navier’s solution is used to solve the equations of motion. The effect of variation of material properties in terms of gradation index, the effects of aspect ratios, thickness-to-side ratio on the bending, the stresses and the natural frequencies of FG plates are studied in this article. The numerical results are also compared with results available in the literature to validate theoretical model of the paper.

    References

    Javaheri R., Eslami M.R. (2002). Buckling of functionally graded plates under in-plane compressive loading, J. Appl. Math. Mech., 82(4): 277-283.

    Zhang D.G., Zhou Y.H. (2008). A theoretical analysis of FGM thin plates based on physical neutral surface, Comput. Mater. Sci., 44(2): 716-720.

    Mohammadi M., Saidi A.R., Jomehzadeh E. (2010). Levy solution for buckling analysis of functionally graded rectangular plates, Appl. Compos. Mater.,17(2): 81-93.

    Bodaghi M., Saidi A.R. (2011). Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation, Arch. Appl. Mech., 81(6): 765-780.

    Della Croce L., Venini P. (2004). Finite elements for functionally graded Reissner-Mindlin plates, Comput. Methods Appl. Mech. Eng., 193(9-11): 705-725.

    Ganapathi M., Prakash T., Sundararajan N. (2006). Influence of functionally graded material on buckling of skew plates under mechanical loads, J. Eng. Mech., 132(8): 902-905.

    Zhao X., Liew K.M. (2009). Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method, Comput. Methods Appl. Mech. Eng., 198(33-36): 2796-2811.

    Zhao X., Lee Y.Y., Liew K.M. (2009). Free vibration analysis of functionally graded plates using the element-free kp-Ritz method, J. Sound Vib., 319(3-5): 918-939.

    Lee Y.Y., Zhao X., Reddy J.N. (2010). Postbuckling analysis of functionally graded plates subject to compressive and thermal loads, Comput. Methods Appl. Mech. Eng., 199(25-28): 1645-1653.

    Hosseini-Hashemi S., Rokni Damavandi Taher H., Akhavan H., Omidi M. (2010). Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory, Appl. Math. Model.,34(5): 1276-1291.

    Hosseini-Hashemi S., Fadaee M., Atashipour S.R. (2011). A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates, Int. J. Mech. Sci., 53(1): 11-22.

    Reddy JN. (2000). Analysis of functionally graded plates, Int. J. Numer. Methods Eng., 47(1-3): 663-684.

    Karama M., Afaq K.S., Mistou S. (2003). Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct., 40(6): 1525-1546.

    ZenkourA.M. (2005). A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses, Int. J. Solids Struct., 42 (18-19): 5224-5242.

    Zenkour A.M. (2005). A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration, Int. J. Solids Struct., 42(18-19): 5243-5258.

    Zenkour A.M. (2006). Generalized shear deformation theory for bending analysis of functionally graded plates, Appl. Math. Model.,30 (1): 67-84

    Benyoucef S., Mechab I., Tounsi A., Fekrar A., Ait Atmane H., Adda Bedia E.A. (2010). Bending of thick functionally graded plates resting on Winkler-Pasternak elastic foundations, Mech. Compos. Mater.,46(4): 425-434.

    Atmane H.A., Tounsi A., Mechab I., Adda Bedia E.A. (2010). Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory, Int. J Mech. Mater. Design, 6(2): 113-121.

    Mantari J. L., Oktem A.S., Guedes Soares C. (2012). Bending response of functionally graded plates by using a new higher order shear deformation theory, Compos. Struct.,94(2): 714-723.

    Pradyumna S, Bandyopadhyay JN. (2008). Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation, J. Sound. Vib.,318(1-2): 176-192.

    Neves AMA., Ferreira AJM., Carrera E, Roque CMC, Cinefra M, Jorge RMN et al. (2012). A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Compos. Part B: Eng., 43(2): 711-25.

    Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN et al. (2012). A quasi-3D hyperbolic shear deformation theory for the static and free vibrationanalysis of functionally graded plates. Compos. Struct, 94(5): 1814-25.

    Neves AMA, Ferreira AJM, Carrera E et al. (2012). Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique, Compos. Part B: Eng., 44(1): 657-674.

    Reddy JN (2011). A general nonlinear third-order theory of functionally graded plates, Int. J. Aeros. Lightw.Struct.,1(1): 1-21

    Talha M, Singh BN. Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Appl. Math. Modell, 34(12): 3991-4011.

    Thai HT, Kim SE (2010). Free vibration of laminated composite plates using two variable refined plate theory, Int J Mech Sci., 52(4): 626-33.

    Thai HT, Kim SE (2013). A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates, Composite Structures, 96: 165-173.