RAPD and ISSR Markers Assessment of Genetic Diversity of 12 Cordyceps Accessions collected in Vietnam

Received: 15-08-2023

Accepted: 25-12-2023

DOI:

Views

2

Downloads

0

Section:

NÔNG HỌC

How to Cite:

Hue, N., Thao, T., Linh, L., Thao, N., Nghien, N., & Son, D. (2024). RAPD and ISSR Markers Assessment of Genetic Diversity of 12 Cordyceps Accessions collected in Vietnam. Vietnam Journal of Agricultural Sciences, 21(12), 1549–1560. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1226

RAPD and ISSR Markers Assessment of Genetic Diversity of 12 Cordyceps Accessions collected in Vietnam

Nong Thi Hue (*) 1 , Tran Thi Thao 1 , Le Phuong Linh 1 , Ninh Thi Thao 1 , Ngo Xuan Nghien 2, 1 , Dinh Truong Son 3, 1

  • 1 Khoa Công nghệ sinh học, Học viện Nông nghiệp Việt Nam
  • 2 Viện Nghiên cứu và Phát triển Nấm ăn, Nấm dược liệu, Học viện Nông nghiệp Việt Nam
  • 3 Viện Sinh học Nông nghiệp, Học viện Nông nghiệp Việt Nam
  • Keywords

    Cordyceps, Cordyceps militaris, genetic diversity, ISSR, RAPD

    Abstract


    Cordyceps spp. belong to the most valuable medicinal caterpillar fungi. However, consumers hardly know the origin and species of Cordycepsspp. commercialized on the market. This study aimed to identify 12 collected Cordyceps samples collected at various locations in Vietnam by ITS sequencing and evaluate the genetic diversity these sampless using RAPD and ISSR markers. 12 Cordyceps accessions were identified as Cordyceps militarisusingITS sequencing. 15 RAPD markers and 15 ISSR markers successfully detected 340 loci of which 291 were polymorphic and a total of 2092 scorable bands were obtained.The similarity coefficientof 12 Cordyceps spp. accessionsrangedfrom 0.568 to 0.841 when combined RAPD and ISSR markers, indicating high genetic diversity. At a genetic similarity of 0.7, the UPGMA dendrogram constructed based on RAPD and ISSR makers separated 12 Cordyceps accessions into three distinct clusters. The correlation analysis between the matrices of similarity coefficients using Mantel’s test revealed a strong correlation among matrices analyzed by RAPD, ISSR or pooled data. Our results could provide useful information for the exploitation and breeding of Cordyceps militarisaccessions.

    References

    Botstein D., White R.L., Skolnick M. & Davis R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 32(3): 314-31.

    Chen Y., Zhang Y.P., Yang Y. & Yang D. (1999). Genetic diversity and taxonomic implication of Cordyceps sinensisas revealed by RAPD markers. Biochem Genet. 37(5-6): 201-13.

    Chen Y.Q., Hu B., Xu F., Zhang W.M., Zhou H. & Qu L.H. (2004). Genetic variation of Cordyceps sinensis, a fruit-body-producing entomopathogenic species from different geographical regions in China. FEMS Microbiology Letters. 230: 153-158.

    Gower J.C., Lubbe S.G. & Le Roux N.J. (2011). Understanding Biplots. John Wiley & Sons.

    Holliday J. & Cleaver M. (2008). Medicinal Value of the Caterpillar Fungi Species of the Genus Cordyceps(Fr.) Link (Ascomycetes) - A Review. Int. J. Med. Mushrooms. 10(3): 219-234.

    Holliday J.C, Cleaver P., Loomis-Powers M. & Patel D., (2004). Analysis of quality and techniques for hybridization of medicinal fungus Cordyceps sinensis(Berk.) Sacc. (Ascomycetes). Int. J. Med. Mushrooms. 6: 151-164.

    Jędrejko K.J., Lazur J. & Muszyńska B. (2021). Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity. Foods. 10(11): 2634.

    Lam K.Y., Chan G.K., Xin G.Z., Xu H., Ku C.F., Chen J.P., Yao P., Lin H.Q., Dong T.T. & Tsim K.W. (2015). Authentication of Cordyceps sinensisby DNA Analyses: Comparison of ITS Sequence Analysis and RAPD-Derived Molecular Markers. Molecules. 20(12): 22454-62.

    Li J., Gao G., Li B., Li B. & Lu Q. (2022). Genetic Analysis of Prunus salicinaL. by Random Amplified Polymorphic DNA (RAPD) and Intersimple Sequence Repeat (ISSR). Genet. Res. ID 2409324.

    Li S.P., Yang F.Q. & Tsim K.W. (2006). Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal. 41(5): 1571-84.

    Liang H.H., Cheng Z., Yang X.L., Li S., Zhou T.S., Zhang W.J. & Chen J.K. (2005). Genetic variation and affinity of Cordyceps sinensisin Qinghai Province based on analysis of morphologic characters and inter-simple sequence repeat markers. Chin Tradit Herb Drugs. 36(12): 1859-1864.

    Patel D.M., Fougat R.S. & Sakure A.A. (2016). Detection of genetic variation in sandalwood using various DNA markers. 3 Biotech. 6(1): 1-11.

    Prevost A. & Wilkinson M. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98: 107-112.

    Serrote C.M.L.,Reiniger L.R.S., Silva K.B., Rabaiolli S.M.D.S. & Stefanel C.M. (2020). Determining the Polymorphism Information Content of a molecular marker. Gene. 5: 726: 144175.

    Singh R., Negi P.S. & Ahmed Z. (2009). Genetic variability assessment in medicinal caterpillar fungi cordyceps spp. (ascomycetes) in central himalayas. Int. J. Med. Mushrooms.11(2): 185-189.

    Sokal R.R. & Michener C.D. (1958). A statistical methods for evaluating relationships. University of Kansas Science Bulletin. 38: 1409-1448.

    Sung J.M., Kim S.H., Yoon C.S., Sung G.H. & Kim Y.W. (1999). Analysis of genetic relationship of Cordyceps militarisin Korea by Random Amplified Polymorphic DNA. The Korean Journal of Mycology 27: 256-273 (In Korean).

    Sung G.H., Hywel-Jones N.L., Sung J.M., Luangsa-Ard J.J., Shrestha B. & Spatafora J.W. (2007). Phylogenetic classification of Cordycepsand the clavicipitaceous fungi. Stud Mycol. 57: 5-59.

    Tran M.H., Nguyen T.M. & Huynh V.B. (2023). Diversity evaluation of Cordyceps spp. in Bidoup Nui Ba, Lam Dong province, Vietnam. IOP Conf. Ser.: Earth Environ. Sci. 1155: 012003.

    Trần Thanh Thy & Lê Văn Vàng (2020). Nghiên cứu môi trường thích hợp nhân nuôi nấm Cordyceps militaristrên vật chủ. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(5B): 125-134.

    Trịnh Tam Kiệt & Trịnh Tam Bảo (2008). Thành phần loài nấm dược liệu của Việt Nam. Tạp chí Di truyền học và Ứng dụng - Chuyên san Công nghệ Sinh học. 4: 39-42.

    Wang L., Zhang W.M., Hu B., Chen Y.Q. & Qu L.H. (2008). Genetic variation of Cordyceps militarisand its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Diversity. 31: 147-155.

    Wu D.T., Lv G.P., Zheng J., Li Q., Ma S.C., Li A.P. & Zhao J. (2016). Cordycepscollected from Bhutan, an appropriate alternative of Cordyceps sinensis. Sci. Rep. 6: 37668.

    Zargar S.M, Farhat S., Mahajan R., Bhakhri A. & Sharma A. (2016). Unraveling the efficiency of RAPD and SSR mark.ers in diversity analysis and population structure estimation in common bean. Saudi J Biol Sci. 23(1): 139-149.

    Zhang Y., Xu L., Zhang S., Liu X., An Z., Wang M. & Guo Y., (2009). Genetic diversity of Ophiocordyceps sinensis, a medicinal fungus endemic to the Tibetan Plateau: Implications for its evolution and conservation. BMC Evol. Biol. 9: 290.