Effects of Silicon Application on Physiological Characteristics and Mineral Nutrient Uptake of Mondo Grass (Ophiopogon japonicus) under Non-irrigated Condition

Received: 24-06-2022

Accepted: 21-10-2022

DOI:

Views

2

Downloads

0

Section:

NÔNG HỌC

How to Cite:

Hai, N., Vinh, N., & Phu, N. (2024). Effects of Silicon Application on Physiological Characteristics and Mineral Nutrient Uptake of Mondo Grass (Ophiopogon japonicus) under Non-irrigated Condition. Vietnam Journal of Agricultural Sciences, 20(10), 1293–1301. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1062

Effects of Silicon Application on Physiological Characteristics and Mineral Nutrient Uptake of Mondo Grass (Ophiopogon japonicus) under Non-irrigated Condition

Nguyen Thi Thanh Hai (*) 1 , Nguyen Dinh Vinh 2 , Nguyen Van Phu 1

  • 1 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • 2 Hội Khoa học Công nghệ ChèViệt Nam
  • Keywords

    Ophiopogon japonicus, water deficiency, Si, physiology characteristics, active ingredients

    Abstract


    The study aimed to evaluate the effects of different levels of silicon fertilization on some physiological parameters and mineral nutrient uptake characteristics of mondo grass under non-irrigation conditions in Ha Hoa district, Phu Tho province. A two-factor experiment was conducted in a split-plot design on haplic Acrisols with 6 levels of silicon (0, 20, 30, 40, 50, 60kgSiO2/ha/year) and 2 varieties of mondo grass (G2 and G6). The results showed that the supplemental application of silicon reduced ion leakage and water saturation deficiency in both two mondo grass varieties. silicon application increased osmotic pressure, SPAD index, and chlorophyll fluorescence efficiency (Fv/Fm), thus enhancing photosynthesis of mondo grass under non-irrigation conditions. The absorption of N, P2O5, K2O, SiO2and the content of polysaccharides, saponins, and flavonoids in the roots and tubers tended to increase with increasing amount of silicon application. The variability of polysaccharides between formulations was found to be lower than that of saponins and flavonoids. On haplic Acrisols, applicationpf 40kgSiO2/ha and basal application of 30kg N/ha + 30kg P2O5/ha + 30kg K2O/ha were considered suitable for mondo grass, helping the plant accumulate active ingredients higher than the other treatments.

    References

    Amin M., Ahmad R., Ali A.,Hussain I., Mahmood R.,Aslam M. &Lee D.J. (2018). Influence of siliconfertilization on maize performance under limited water supply. Silicon. 10:177-183.

    Ahmad M.,El-Saeid M.H.,AkramM.A., Ahmad H.R.,Haroon H.&Hussain (2016).A. Silicon fertilization_A tool to boost up drought tolerance in wheat (TriticumaestivumL.) crop for better yield. J. Plant Nutr., 39:1283-1291.

    Ashraf M. &Foolad M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59: 206-216.

    Ahmed M., Qadeer U. &Aslam M.A.(2011).Silicon application and drought tolerance mechanism of sorghum. Afr.J.Agric.Res 6:594-607.

    Bajji M., Kinet J.M.&Lutts S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36: 61-70.

    Blum A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 40:4-10.

    Chen W., Yao X., Cai K. &Chen J. (2011).Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res. 142: 67-76.

    Chang C.C., Yang M.H., Wen H.M.& Chern J.C.(2002). Estimation of total flavonoid content in propolis by two Complementary colorimetric methods. Journal of Food and Drud Analysis.10(3): 178-182.

    Farouk S. & Al-Amri S.M, (2019).Exogenouszinc forms counteract NaCl - induced damage byregulating the antioxidant system, osmotic adjustment substances and ions in canola(Brassica napus L. cv Pactol) plants.J. Soil Sci. Plant Nutr. 19(4): 887-899.

    Guntzer F., Keller C. & Meunier J.D.(2012). Benefits of plant silicon for crops: A review. Agron. Sustain. Dev.32: 201-213.

    Gunes A., Pilbeam D.J., Inal A. &Coban S. (2008). Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Commun. Soil Sci. Plant Anal. 39: 1885-1903.

    Gong H.J., Chen K.M., Chen G.C, Wang S.M. & Zhang C.L.(2003).Effects of silicon on growth of wheat under drought. J. Plant Nutr.26:1055-1063.

    Hattori T., Inanaga S., Araki H., Morita S., Luxová M. & Lux A. (2005). Application of silicon enhanced drought tolerance in Sorghumbicolor. Physiol Plant. 123:459-466.

    Isah T. (2019). Stress and defense responses in plant secondary metabolites production. Biol Res.52(39):1-2.

    Kaya C., Tuna L. & Higgs D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr. 29: 1469-1480.

    Maghsoudi K., Emam Y. & Ashraf M. (2015). Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought stress. Turk J Bot, 39: 1-10.

    Neu S., Schaller J. & Dudel E.G. (2017). Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivumL.). Sci. Rep. 7: 3-10.

    Nguyễn Thu Quỳnh, Nguyễn Thị Lan Anh, Bùi Thị Luyến & Nguyễn Duy Thư (2018). Xây dựng phương pháp định lượng saponintrong dịch chiết nhân hạt gấc bằng quang phổ UV-Vis. Tạp chí Khoa học và Công nghệ Đại học Thái Nguyên. 188(12/1): 39-43.

    Nguyễn Văn Bình, Phạm Thị Phương &Nguyễn Tá Lợi (2018). Nghiên cứu một số yếu tố ảnh hưởng đến quá trình trích ly hàm lượng polysaccharidetoàn phần trong nấm linh chị đỏ. Tạp chí Khoa học vàCông nghệ.180(4): 3-8.

    Sonobe K., Hattori T., An P., Tsufi W., Eneji AE., Kobayashi S., Kawamura Y., Tanaka K. & Inanaga S. (2010). Effect of silicon application on sorghum root responses to water stress. J. Plant Nutr. 34: 71-82.

    Shi Y., Zhang Y., Han W., Feng R., Hu Y., Guo J. & Gong H. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicumL. Front. Plant Sci. 7: 196.

    Schnabel G., Strittmatter G. & Noga G. (1998). Changes in photosynthetic electron transport in potato cultivars with different field resistance after infection with Phytophthora infestans. J. Phytopathol. 146: 205-210.

    SiddiquiM.H., AlamriS., AlsubaieQ.D., AliH.M., KhanM.N., Al-GhamdiA., IbrahimA.A. &AlsadonA. (2020). Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide Biol. Chem. 94: 95-107.

    Treml J. & Smejkal K. (2016). Flavonoid as potent scavengers of hydroxyl radicals. Compr. Rev. Food Sci. Food Saf. 15: 720-738.

    Verma N. & Shukla S. (2015). Impact of various factor responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plant. 2: 105-113.

    Wang B.,ChuC.,Wei H.,Zhang L.,AhmadZ.,WuS. &Xie B. (2020). Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensisL.) grown on soil contaminated with multiple heavy metals. Environ. Pollut.267:115411.

    Zhao M.G., Zhao X., Wu Y.X. & Zhang L.X. (2007). Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. Journal of Plant Physiology.164(6):737-745.