Development and Selection of Anthocyanin-Rich Fruit Corn Lines

Received: 15-11-2021

Accepted: 05-07-2022

DOI:

Views

2

Downloads

0

Section:

NÔNG HỌC

How to Cite:

Tuan, P., Duc, N., Anh, N., Binh, V., & Liet, V. (2024). Development and Selection of Anthocyanin-Rich Fruit Corn Lines. Vietnam Journal of Agricultural Sciences, 20(7), 853–862. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1027

Development and Selection of Anthocyanin-Rich Fruit Corn Lines

Pham Quang Tuan (*) 1 , Nguyen Trung Duc 1 , Nguyen Thi Nguyet Anh 1 , Vu Thi Xuan Binh 2 , Vu Van Liet 3

  • 1 Viện Nghiên cứu và Phát triển cây trồng, Học viện Nông nghiệp Việt Nam
  • 2 Ban Khoa học và Công nghệ, Học viện Nông nghiệp Việt Nam
  • 3 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • Keywords

    Fruit corn, anthocyanin, elite, UV10, TD05

    Abstract


    This study aimed to develop and select elite anthocyanin-rich fruit corn lines for hybrid fruit corn breeding which can eat fresh without processing. Two strategies were applied viz, (i) backcross between purple waxy corn and white sweet corn, and (ii) mass selection from F2population crossed between purple waxy corn and yellow sweet corn based on morphological markers such as dark purple color and shrunken kernels. Two superior lines viz, UV10 from the first strategy and TD05 from the second strategy were selected. These lines had thin pericarp (35.2µm in UV10 line and 31.4µm in TD05), high sweetness with Brix of 17.4% in UV10 and 22.5% in TD05, and high anthocyanin content (139.9 mg/100g in UV10, and 136.9 mg/100g in TD05).Anthocyanin-rich fruit corn hybrids could be generated from a cross between purple sweet corn inbred lines and white sweet corn or with yellow sweet corn lines. Purple color in seed coat is a dominant trait and inherited to the F1generation. The marketable yield and quality of the purple sweet corn hybrids were comparable to yellow sweet corn SW1011 and predominated to purple waxy corn Fancy111, indicating the commercial potential.

    References

    Anirban A. & O’hare T. (2020). Super-sweet purple sweetcorn: breaking the genetic link. Multidisciplinary Digital Publishing Institute Proceedings.36(1): 6134.

    Bộ NN&PTNT (2011a). QCVN01-56:2011/BNNPTNT: Quy chuẩn kỹ thuật quốc gia về khảo nghiệm giá trị canh tác và giá trị sử dụng củagiống ngô.

    Bộ NN&PTNT (2011b). QCVN01-66:2011/BNNPTNT: Quy chuẩn kỹ thuật quốc gia về khảo nghiệm tính khác biệt, tính đồng nhất và tính ổn định của giống ngô.

    Brewbaker J.L. & Martin I. (2015). Breeding tropical vegetable corns. Plant Breeding Reviews. 39: 125-198.

    Butelli E., Titta L., Giorgio M., Mock H.P., Matros A., Peterek S., Schijlen E.G.W.M., Hall R.D., Bovy A.G., Luo J. & Martin C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology.26(11): 1301-1308.

    Cassidy A., Bertoia M., Chiuve S., Flint A., Forman J. & Rimm E.B. (2016). Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. The American Journal of Clinical Nutrition.104(3): 587-594.

    Chatham L.A., West L., Berhow M.A., Vermillion K.E. & Juvik J.A. (2018). Unique Flavanol-Anthocyanin Condensed Forms in Apache Red Purple Corn. Journal of Agricultural and Food Chemistry.66(41): 10844-10854.

    Choe E. (2010). Marker assisted selection and breeding for desirable thinner pericarp thickness and ear traits in fresh market waxy corn germplasm. Doctoral dissertation, University of Illinois, Urbana, IL.http://hdl.handle.net/2142/15562:1-135.

    Giusti M. & Wrolstad R. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current protocols in food analytical chemistry. 1: 1-13.

    Harakotr B., Suriharn B., Lertrat K. & Scott M. (2016). Genetic analysis of anthocyanin content in purple waxy corn (Zea maysL. var. ceratinaKulesh) kernel and cob. Sabrao Journal of Breeding and Genetics. 48(2): 230.

    Hong H.T., Netzel M.E. & O'hare T.J. (2020). Anthocyanin composition and changes during kernel development in purple-pericarp supersweet sweetcorn. Food Chemistry. 315: 126284.

    Hong H.T., Phan A.D.T. & O’hare T.J. (2021). Temperature and maturity stages affect anthocyanin development and phenolic and sugar content of purple-pericarp supersweet sweetcorn during storage. Journal of Agricultural and Food Chemistry. 69(3): 922-931.

    Hu X., Liu J., Li W., Wen T., Li T., Guo X.-B. & Liu R. H. (2020a). Anthocyanin accumulation, biosynthesis and antioxidant capacity of black sweet corn (Zea maysL.) during kernel development over two growing seasons. Journal of Cereal Science. 95: 103065.

    Hu X., Liu J., Li W., Wen T., Li T., Guo X. & Liu R.H. (2020b). Biosynthesis and accumulation of multi-vitamins in black sweet corn (Zea maysL.) during kernel development. Journal of the Science of Food and Agriculture. 100(14): 5230-5238.

    Kleinhenz M.D. & Bumgarner R.N. (2012). Using °Brix as an indicator of vegetable quality instructions for measuring °brix in cucumber, leafy greens, sweet corn, tomato, and watermelon. Fact sheet HYG-1653-12, Agriculture and Natural Resources, The Ohio State University.

    Mahan A.L., Murray S.C., Rooney L.W. & Crosby K.M. (2013). Combining ability for total phenols and secondary traits in a diverse set of colored (red, blue, and purple) maize. Crop Science. 53(4): 1248-1255.

    Nguyễn Trung Đức, Phạm Quang Tuân, Nguyễn Thị Nguyệt Anh & Vũ Văn Liết (2020). Nghiên cứu tuyển chọn một số dòng ngô ngọt phục vụ chọn tạo giống ngô trái cây dựa trên kiểu hình và chỉ thị phân tử. Tạp chí Khoa học Nông nghiệp Việt Nam. 18(12): 1102-1113.

    Olivoto T. & Lúcio A.D.C. (2020). metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution. 11(6): 783-789.

    Olivoto T. & Nardino M. (2021). MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics. 37(10): 1383-1389.

    Pham Quang Tuan, Nguyen the Hung, Nguyen Viet Long, Nguyen Thi Nguyet Anh & Vu Van Liet (2016). Evaluation of purple waxy corn lines for hybrid variety development. Vietnam Journal of Agricultural Sciences. 14(3): 328-337.

    Phạm Quang Tuân, Nguyễn Thế Hùng, Nguyễn Việt Long, Vũ Văn Liết, Nguyễn Trung Đức & Nguyễn Thị Nguyệt Anh (2018). Cải thiện độ ngọt của các dòng ngô nếp bằng phương pháp lai trở lại. Tạp chí Khoa học Nông nghiệp Việt Nam. 16(3): 197-206.

    R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://cran.r-project.org/bin/windows/base/ old/4.1.1 on August 30, 2021.

    Revilla P., Anibas C.M. & Tracy W.F. (2021). Sweet corn research around the world 2015-2020. Agronomy. 11(3).

    So Y.S. (2018). Pericarp thickness of Korean maize landraces. Plant Genetic Resources: Characterization and Utilization. 17(1): 87-90.

    Tracy W.F., Shuler S.L. & Dodson-Swenson H. (2019). The use of endosperm genes for sweet corn improvement. in Plant Breeding Reviews. 43(1): 215-241.

    Yao H., Zhou Q., Li J., Smith H., Yandeau M., Nikolau B.J. & Schnable P.S. (2002). Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proceedings of the National Academy of Sciences. 99(9): 6157-6162.

    Yousuf B., Gul K., Wani A.A. & Singh P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Critical Reviews in Food Science and Nutrition. 56(13): 2223-2230.