Estimatingthe Basic Reproductive Number and Vaccine Coverage for African Swine Fever Prevention in Large-scale Fattening Farms

Received: 23-12-2021

Accepted: 05-07-2022

DOI:

Views

3

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Ngan, M., Ngoc, V., & Thai, T. (2024). Estimatingthe Basic Reproductive Number and Vaccine Coverage for African Swine Fever Prevention in Large-scale Fattening Farms. Vietnam Journal of Agricultural Sciences, 20(7), 892–899. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1017

Estimatingthe Basic Reproductive Number and Vaccine Coverage for African Swine Fever Prevention in Large-scale Fattening Farms

Mai Thi Ngan (*) 1 , Vu Thi Ngoc 1 , Truong Ha Thai 1

  • 1 Khoa Thú y, Học viện Nông nghiệp Việt Nam
  • Keywords

    African Swine Fever, basic reproduction number, large-scale, vaccine coverage

    Abstract


    African swine fever (ASF) is a highly contagious disease with a mortality of up to 100%, resulting in high economic losses. In Vietnam, ASF was first reported in February 2019 and quickly spread to all provinces. This study aimed to estimate the basic reproduction number (R0) and developed a dynamic model to explain how ASF spreads in the pig herd during the first epidemic year to suggest vaccine coverage level required to prevent future outbreaks. The outbreak data were collected from 6 large-scale fattening farms within the first wave of ASF outbreaks. Two methods were used to estimate the R0including the Exponential Growth method (EG) and Maximum Likelihood method (ML). The average R0values were estimated at 2.97 (95%CI: 2.44-3.59) and 3.18 (95%CI: 2.52-3.96), respectively. Based on the worst-case scenario, all pigs in a herd would be infected and removed within 50 days. The vaccination rate ranges from 75-94% of pigs in each farm depending on the vaccine effectiveness.

    References

    Barongo M.B., Ståhl K., Bett B., Bishop R.P., Fèvre E.M., Aliro T., Okoth E., Masembe C., Knobel D. & Ssematimba A. (2015). Estimating the Basic Reproductive Number (R0) for African Swine Fever Virus (ASFV) Transmission between Pig Herds in Uganda. PLoS One. 10(5): e0125842.

    Begon M., Bennett M., Bowers R.G., FrenchN.P., Hazel S.M. & Turner J. (2002). A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol Infect. 129(1): 147-53.

    Brooks-Pollock E., De Jong M.C., Keeling M.J., Klinkenberg D. & Wood J.L. (2015). Eight challenges in modelling infectious livestock diseases. Epidemics. 10: 1-5.

    Chladná Z., Kopfová J., Rachinskii D. & Rouf S.C. (2020). Global dynamics of SIR model with switched transmission rate. J. Math. Biol. 80(4): 1209-1233.

    Cooper I., Mondal A. & Antonopoulos C.G. (2020). A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals. 139: 110057.

    De Carvalho Ferreira H.C., Backer J.A., Weesendorp E., Klinkenberg D., Stegeman J.A. & Loeffen W. L. (2013). Transmission rate of African swine fever virus under experimental conditions. Vet Microbiol. 165(3-4): 296-304.

    De Koeijer A., Heesterbeek H., Schreuder B., Oberthür R., Wilesmith J., Van Roermund H. & De Jong M. (2004). Quantifying BSE control by calculating the basic reproduction ratio R0 for the infection among cattle. J Math Biol. 48(1): 1-22.

    Depner K., Gortazar C., Guberti V., Masiulis M., More S., Oïðevskis E., Thulke H.H., Viltrop A., Woźniakowski G., Cortiñas Abrahantes J., Gogin A., Verdonck F. & Dhollander S. (2017). Epidemiological analyses of African swine fever in the Baltic States and Poland: (Update September 2016-September 2017). Efsa j. 15(11): e05068.

    Dharmaratne S., Sudaraka S., Abeyagunawardena I., Manchanayake K., Kothalawala M. & Gunathunga W. (2020). Estimation of the basic reproduction number (R0) for the novel coronavirus disease in Sri Lanka. Virol J. 17(1): 144.

    Fine P., Eames K. & Heymann D.L. (2011). “Herd Immunity”: A Rough Guide. Clin. Infect. Dis. 52(7): 911-916.

    Gaudreault N.N. & Richt J.A. (2019). Subunit Vaccine Approaches for African Swine Fever Virus. Vaccines. 7(2).

    Guinat C., Gubbins S., Vergne T., Gonzales J.L., Dixon L. & Pfeiffer D.U. (2016). Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain. Epidemiol. Infect. 144(1): 25-34.

    Gulenkin V.M., Korennoy F.I., Karaulov A.K. & Dudnikov S.A. (2011). Cartographical analysis of African swine fever outbreaks in the territory of the Russian Federation and computer modeling of the basic reproduction ratio. Prev. Vet. Med. 102(3): 167-74.

    Halasa T., Bøtner A., Mortensen S., Christensen H., Toft N. & Boklund A. (2016). Simulating the epidemiological and economic effects of an African swine fever epidemic in industrialized swine populations. Vet Microbiol. 193: 7-16.

    Iglesias I., Muñoz M. J., Montes F., Perez A., Gogin A., Kolbasov D. & De La Torre A. (2016). Reproductive Ratio for the Local Spread of African Swine Fever in Wild Boars in the Russian Federation. Transbound. Emerg. Dis. 63(6): e237-e245.

    Keeling M.J. & Rohani P. (2008). Modeling Infectious Diseases in Humans and Animals. 10.2307/j.ctvcm4gk0. Princeton University Press.

    Korennoy F.I., Gulenkin V.M., Gogin A.E., Vergne T. & Karaulov A.K. (2017). Estimating the Basic Reproductive Number for African Swine Fever Using the Ukrainian Historical Epidemic of 1977. Transbound. Emerg. Dis. 64(6): 1858-1866.

    Montgomery R.E. (2021). On A Form of Swine Fever Occurring in British East Africa (Kenya Colony). Journal of Comparative Pathology. 34: 159-191.

    Nikbakht R., Baneshi M.R. & Bahrampour A. (2018). Estimation of the Basic Reproduction Number and Vaccination Coverage of Influenza in the United States (2017-18). J Res Health Sci. 18(4): e00427.

    Plans-Rubió P. (2012). The vaccination coverage required to establish herd immunity against influenza viruses. Prev. Med. 55(1): 72-77.

    Sánchez-Vizcaíno J.M., Mur L., Gomez-Villamandos J.C. & Carrasco L. (2015). An update on the epidemiology and pathology of African swine fever. J Comp Pathol. 152(1): 9-21.

    Trần Xuân Hạnh, Nguyễn Văn Dung, Lê Thị Thu Phương, Nguyễn Quang Huy, Đỗ Thanh Thủy, Quách Vô Ngôn, Phạm Hào Quang, Nguyễn Tấn Liêm, Hồ Nguyễn Hải Vy, Huỳnh Thị Ngọc Ánh, Bùi Anh Thy, Trần Hữu Huy, Đào Huỳnh Thiên Thanh, Phạm Thị Yến Như, Nguyễn Đức Huy, Nguyễn Thanh Hoài, Đỗ Thị Thùy Dung, Trần Thu Lâm, Nguyễn Thị Thủy, Đoàn Ngọc Trung, Tạ Hoàng Long, Nguyễn Thị Thúy Hà, Hoàng Thị Thu Hương, Nguyễn Trung Tiến, Phạm Quang Trung, Bạch Đức Lữu, Võ Văn Hùng, Nguyễn Thanh Phương, Cyril G. Gay, Manuel V. Borca & Gladue D.P. (2021). Đánh giá hiệu quả phòng bệnh của vacxin dịch tả heo châu Phi nhược độc đông khô chủng G-delta-I177L trên heo. Tạp chí Khoa học Kỹ thuật Thú y. 28(7): 5-14.

    Tổng Cục Thống Kê (2021). Chăn nuôi lợn đang đà hồi phục. Truy cập từ https://www.gso.gov.vn/du-lieu-va-so-lieu-thong-ke/2021/04/chan-nuoi-lon-dang-da-hoi-phuc/ ngày 08/04/2021.

    Xu C., Dong Y., Yu X., Wang H., Tsamlag L., Zhang S., Chang R., Wang Z., Yu Y., Long R., Wang Y., Xu G., Shen T., Wang S., Zhang X., Wang H. & Cai Y. (2020). Estimation of reproduction numbers of COVID-19 in typical countries and epidemic trends under different prevention and control scenarios. Front Med. 14(5): 613-622.

    Zhang S., Diao M., Yu W., Pei L., Lin Z. & Chen D. (2020). Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int J Infect Dis. 93: 201-204.