Received: 29-11-2021
Accepted: 05-04-2022
DOI:
Views
Downloads
How to Cite:
Genetic Identification of Target Mutationsin OsSWEET14 Promoter-edited TBR225 Rice Lines
Keywords
Bacterial leaf blight disease, CRISPR/Cas9, OsSWEET14, TBR225, Xanthomonas oryzae
Abstract
Understanding host-pathogen interactions is key in breeding disease-resistant crops, including bacterial leaf blight. As a key virulence strategy to cause bacterial leaf blight, Xanthomonas oryzae pv.oryzae(Xoo) secretes transcription activator-like effectors (TALEs) to control the expression of host target genes through binding to the effector-binding elements (EBEs) located on the promoter regions. Precise mutagenesis at the TALE-interaction sites on the host genes by using gene editing tools such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRSIPR/Cas9) has been seen as a promising way to improve BLB resistance ofrice cultivars. In a previous study, we generated some transgenic TBR225 rice lines containing a single copy of CRISPR/Cas9 expression construct for editing AvrXa7/Tal5EBE on the promoter OsSWEET14. In this study, we continued to evaluate genotype and phenotype of T1edited TBR225 lines to determinethe genetic stability and phenotypic effective of the CRISPR/Cas9-induced OsSWEET14mutations. The genotypic analysis showed that 65%of transgenic TBR225 plants harbored the targeted OsSWEET14mutation, including nucleotide (Nu) insertion and deletion. The OsSWEET14mutations were stably inherited to the next generation with an expected segregation ratio consistent with Mendelian segregation (1:2:1). The preliminary phenotypic analysis suggested that the mutation of OsSWEET14promoter did not affect the growth and yield of gene-edited rice plants. Some T1TBR225 lines showed the resistance to Xoo isolate VXO_11 in the leaf-clipping experiment. The obtained results are a premise for development of the BLB-resistant TBR225 rice variety in the future.
References
Antony G., Zhou J., Huang S., Li T., Liu B., White F. & Yang B. (2010). Rice xa13recessive resistance to bacterial blight is defeated by induction of thedisease susceptibility gene Os-11N3. Plant Cell. 22: 3864-3876.
Blanvillain-Baufumé S., Reschke M., Solé M., Auguy F., Doucoure H., Szurek B., Meynard D., Portefaix M., Cunnac S., Guiderdoni E., Boch J. & Koebnik R. (2017). Targeted promoter editing for rice resistance to Xanthomonas oryzaepv. oryzaereveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol. J. 15(3): 306-317.
Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T. Nickstadt A. & Bonas Ulla (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 326: 1509-1512.
Doyle J.J. & Doyle J.L. (1990). Isolation of plant DNA from fresh tissue. Focus. 12: 13-15.
Hutin M., Perez-Quintero A.L., Lopez C. & Szurek B. (2015a). MorTAL Kombat: the story of defense against TAL effectors through loss-ofsusceptibility. Front Plant Sci. 6: 535.
Hutin M., Sabot F., Ghesqui ere A., Koebnik R. & Szurek B. (2015b). A knowledge-based molecular screen uncovers a broad spectrum OsSWEET14resistance allele to bacterial blight from wild rice. Plant J. 84: 694-703.
Ke Y., Hui S. &Yuan M. (2017). Xanthomonas oryzaepv. oryzaeinoculation and growth rate on rice by clipping method. Bio-protocol. 7(19): e2568.
Moscou M.A. & Bogdanove A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science. 326:1501
Nguyễn Duy Phương, Phạm Thu Hằng, Phùng Thị Thu Hương & Phạm Xuân Hội (2019). Chuyển cấu trúc chỉnh sửa promoter OsSWEET14 vào giống lúa TBR225. Tạp chí Công nghệ sinh học. 17(1):1-7.
Phùng Thị Thu Hương, Nguyễn Duy Phương & Phạm Xuân Hội (2018). Nghiên cứu phân lập promoter OsSWEET14 và thiết kế cấu trúc gRNA tăng cường khả năng kháng bệnh bạc lá của giống lúa TBR225. Tạp chí Nông nghiệp và Phát triển nông thôn. 23:42-49.
Smith L.M., Sanders J.Z., Kaiser R.J., Hughes P., Dodd C., Connell C.R., Heiner C., Kent S.B. &Hood L.E. (1986). Fluorescence detection in automated DNA sequence analysis. Nature. 321(6071): 674-679.
Standard Evaluation System for Rice (SES) (2002), International Rice Research Institute (IRRI). Rice knowledge book.
Streubel J., Pesce C., Hutin M., Koebnik R., Boch J. &Szurek, B. (2013). Five phylogenetically close rice SWEETgenes confer TAL effector-mediatedsusceptibility to Xanthomonas oryzaepv. oryzae. New Phytol. 200: 808-819.
Trigiano N.R. & GrayJ.D. (2011). Plant Tissue Culture, Development, and Biotechnology.CRC Press, Boca Raton, Florida, USA.
van Schie C.N.C. & Takken L.W.F. (2014). Susceptibility genes 101: how tobe a good host. Annu. Rev. Phytopathol. 52: 551-581.
Vouillot L., Thelie A. & Pollet N. (2015). Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3: (Bethesda). 5: 407-415.
Vũ Hoài Sâm, Nguyễn Thanh Hà, Cao Lệ Quyên, Nguyễn Duy Phương & Phạm Xuân Hội (2019). Nghiên cứu vai trò gen OsSWEET14trong quá trình xâm nhiễm của vi khuẩn gây bệnh bạc lá trên lúa Bắc thơm 7. Tạp chí Nông nghiệp và Phát triển nông thôn. 2(353): 13-19.
Wang F., Wang C., Liu P., Lei C., Hao W., Gao Y., Liu Y.G. &Zhao K. (2016). Enhanced rice blast resistance by CRISPR/Cas 9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. 11: e0154027.
Zhang A., Liu Y., Wang F., Li T., Chen Z., Kong D., Bi J., Luo., Wang J., Tang J., Yu X., Liu G. & Lou L. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22gene. Mol Breeding. 39: 47.
Zhou H., Liu B., Weeks P. D., Spalding H.M. &Yang B (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 42(17): 10903-10914.