Received: 18-11-2021
Accepted: 01-03-2022
DOI:
Views
Downloads
How to Cite:
Application of DifferentNonlinear Functionsto Describe the Egg Production Rate of D310 Chicken
Keywords
Nonlinear models, egg production curve, D310 chickens
Abstract
Egg production is an important economic trait in poultry production in general and egg-laying hens in particular. Prediction of eggs performance at early stage could improve livestock efficiency by setting up a early production plan. This study was conducted to describe the egg production rate and determine the best models to estimate egg production at the peak of egg-laying of D310 chickens raised at experimental farm, Faculty of Animal Science of Vietnam National University of Agriculture from December 2020 to May 2021. Five functional nonlinear models (Logistic, Compartmental I, McNally, Compartmental II and Yang) were used to estimate egg production rate at the peak of egg-laying from 19 to 49 weeks of age. Egg production rate was collected from 360 hens from 19 weeks of age (fisrt egglaying week) to 49 weeks of age (26 weeks of egglaying period). The egg production rate at the peak of egg-laying (a) estimated by Logistic model was 0.839. The mean egg production week at egg production peak estimated by Logistic model was 5.265 eggs. The Logistic function appeared most appropriate to describe egg production rate of D310 chickens with the highest coefficient of determination (99.58 %) and the lowest values of AIC (-1862,53) and BIC (-1843,82).
References
Abraham B.L. & Murthy H. (2017). Egg production curves and their prediction through mathematical models in a random-bred broiler breeder control population. Indian Journal of Poultry Science.52(1): 16-21.
Akilli A. & Gorgulu O. (2019). Comparison of Different Back-Propagation Algorithms and Nonlinear Regression Models for Egg Production Curve Fitting. Cappadocia, Turkey.178.
Akilli A. & Gorgulu O. (2020). Comparative assessments of multivariate nonlinear fuzzy regression techniques for egg production curve. Tropical Animal Health and Production.pp. 1-9.
Bùi Hữu Đoàn, Nguyễn Thị Mai, Nguyễn Thanh Sơn& Nguyễn Huy Đạt (2011). Các chỉ tiêu dùng trong nghiên cứu chăn nuôi gia cầm. Nhà xuất bản Nông nghiệp, Hà Nội.
Darmani K.H. & France J. (2019). Modelling cumulative egg production in laying hens and parent stocks of broiler chickens using classical growth functions. British Poultry Science.60(5): 564-569.
Elzhov T.V., Mullen K.M., Spiess A., Bolker B., Mullen M.M. & Suggests M. (2016). R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds’. Package ‘minpack.lm’.
Mcmillan I. (1981). Compartmental model analysis of poultry egg production curves. Poultry Science.60(7): 1549-1551.
Mcmillan I., Fitz-Earle M., Butler L. & Robson D.S. (1970a). Quantitative genetics of fertility II. Lifetime egg production of Drosophila melanogaster Experimental. Genetics.65(2): 355.
Mcmillan I., Fitz-Earle M. & Robson D.S. (1970b). Quantitative genetics of fertility I. Lifetime egg production of Drosophila melanogaster theoretical. Genetics.65(2): 349.
Mcnally D. (1971). Mathematical model for poultry egg production. Biometrics.pp. 735-738.
Narinc D., Üçkardeş F. & Aslan E. (2014). Egg production curve analyses in poultry science. World's Poultry Science Journal.70(4): 817-828.
Nelder J. (1961). The fitting of a generalization of the logistic curve. Biometrics.17(1): 89-110.
Nguyễn Bá Mùi, Nguyễn Chí Thành, Phan Xuân Hảo & Lê Anh Đức (2012). Khả năng sinh sản của gà địa phương lông cằm nuôi tại Lục Ngạn, Bắc Giang. Tạp chí Khoa học Kỹ thuật Chăn nuôi.8(161): 2-7.
Nguyễn Bá Mùi & Phạm Kim Đăng (2016). Khả năng sản xuất của gà Ri và con lai (Ri-Sasso-Lương Phượng) nuôi tại An Dương, Hải Phòng. Tạp chí Khoa học Nông nghiệp Việt Nam.14(3): 392-399.
Nguyễn Thị Lan Anh, Dư Thanh Vũ & Nguyễn Thị Bích Liên (2020). Khả năng sinh trưởng và sinh sản của gà Đông Tảo tại tỉnh Gia Lai. Tạp chí Khoa học và Công nghệ.13: 67-72.
Otwinowska-Mindur A., Gumułka M. & Kania-Gierdziewicz J. (2016). Mathematical models for egg production in broiler breeder hens. Annals of Animal Science.16(4): 1185-1198.
R Core Team (2021). R: A language and environment for statistical computing. R foundation for statistical computing Vienna, Austria.
Safari-Aliqiarloo A., Faghih-Mohammadi F., Zare M., Seidavi A., Laudadio V., Selvaggi M. & Tufarelli V. (2017). Artificial neural network and non-linear logistic regression models to fit the egg production curve in commercial-type broiler breeders. European Poultry Science.81.
Safari-Aliqiarloo A., Zare M., Faghih-Mohammadi F., Seidavi A., Laudadio V., Selvaggi M. & Tufarelli V. (2018). Phenotypic study of egg production curve in commercial broiler breeders using Compartmental function. Revista Brasileira de Zootecnia.47.
Savegnago R.P., Cruz V.A.R., Ramos S.B., Caetano S.L., Schmidt G.S., Ledur M.C., El Faro L. & Munari D.P. (2012). Egg production curve fitting using nonlinear models for selected and nonselected lines of White Leghorn hens. Poultry Science.91(11): 2977-2987.
Savegnago R.P., Nunes B.N., Caetano S.L., Ferraudo A.S., Schmidt G.S., Ledur M.C. & Munari D.P. (2011). Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens. Poultry Science.90(3): 705-711.
Saykham S. & Đặng Vũ Bình (2018). Đặc điểm ngoại hình và khả năng sản xuất của gà Hon Chu. Tạp chí Khoa Học Nông nghiệp Việt Nam.16(12): 1039-1048.
Yang N., Wu C. & Mcmillan I. (1989). New mathematical model of poultry egg production. Poultry Science.68(4): 476-481.