Recent Advances and Future Perspectives for the Improvement of Stress Tolerance in Rice BreedingUsing CRISPR/Cas9

Received: 07-09-2021

Accepted: 09-12-2021

DOI:

Views

7

Downloads

1

Section:

TỔNG QUAN

How to Cite:

Huong, B., Hong, N., Ha, C., Quyen, H., Thu, P., Huong, P., … Thao, N. (2024). Recent Advances and Future Perspectives for the Improvement of Stress Tolerance in Rice BreedingUsing CRISPR/Cas9. Vietnam Journal of Agricultural Sciences, 20(1), 123–132. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/943

Recent Advances and Future Perspectives for the Improvement of Stress Tolerance in Rice BreedingUsing CRISPR/Cas9

Bui Thi Thu Huong (*) 1 , Nguyen Thi Hong 1 , Chu Duc Ha 2 , Ha Thi Quyen 2 , Pham Phuong Thu 3 , Phung Thi Thu Huong 4 , Le Thi Ngoc Quynh 5 , Nguyen Quoc Trung 1 , Dong Huy Gioi 1 , Nguyen Thanh Hai 1 , Ninh Thi Thao 1

  • 1 Khoa Công nghệ sinh học, Học viện Nông nghiệp Việt Nam
  • 2 Khoa Công nghệ Nông nghiệp, Đại học Công nghệ, Đại học Quốc gia Hà Nội
  • 3 Khoa Sinh - Kỹ thuật Nông nghiệp, Đại học Sư phạm Hà Nội 2
  • 4 Viện Di truyền Nông nghiệp, Viện Khoa học Nông nghiệp Việt Nam
  • 5 Khoa Hóa và Môi trường,Đại học Thủy lợi
  • Keywords

    Rice, CRISPR/Cas9, mutation, tolerance, abiotic stress, biotic stress

    Abstract


    Rice (Oryza sativaL.) is one of the most important staple crops that is widely cultivated in the world. Due to the critical role of rice in the global food security, great efforts have been made in order to develop new rice varieties with good agronomic traits, such as biotic and abiotic stress tolerance. The CRISPR/Cas9 has emerged as a promising system for the improvement of various traits of crop plants because of its efficiency, simplicity, and versatility. In this mini review, we discussedthe applications of the CRISPR/Cas9 gene editing system to improve a wide range of traits in rice varieties adapted to unfavorable conditions. Specifically, a number of functional and regulatory genes that are associated with diseases (rice blast, bacterial blight) and pesticide resistance and abiotic stress(salinity, drought,and cold) tolerance havebeen functionally characterized via the mutants produced by the CRISPR/Cas9 system. Additionally, the advances and limitations of using CRISPR/Cas9 system in rice plantswerediscussed. Taken together, our papercould provide a solid foundation for further application of genome editing tools in plant breeding for tackling climate change.

    References

    Altpeter F.&Springer N.M. (2016). Advancing Crop Transformation in the Era of Genome Editing. The Plant Cell.28(7):1510-1520.

    Chao L., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R. &Gao C. (2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology.19.

    Chen J.F., Zhao Z.X., Li Y., Li T.T., Zhu Y., Yang X.M., Zhou S.X., Wang H., Zhao J. Q. &Pu M. (2021). Fine-tuning roles of Osa-miR159a in rice immunity against Magnaporthe oryzae and development. Rice.14(1):1-11.

    Dong Y., Jin X., Tang Q., Zhang X., Yang J., Liu X., Cai J., Zhang X., Wang X. &Wang Z. (2017). Development and Event-specific Detection of Transgenic Glyphosate-resistant Rice Expressing the G2-EPSPS Gene. Frontiers in plant science.8(885).

    Duan Y.B., Li J., Qin R.Y., Xu R.F., Li H., YangY.C., Ma H., Li L., Wei P.C. &Yang J.B. (2016). Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant molecular biology.90(1-2):49-62.

    Fartyal D., Agarwal A., James D., Borphukan B., Ram B., Sheri V.,Agrawal P.K., Achary V.M.M. &Reddy M.K. (2018). Developing dual herbicide tolerant transgenic rice plants for sustainable weed management. Scientific reports.8:11598.

    Hamada H., Liu Y., Nagira Y., Miki R., Taoka N. &Imai R. (2018). Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Scientific reports. 8: 14422.

    He Y., Zhu M., Wang L., Wu J., Wang Q., Wang R. &Zhao Y. (2018). Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants. Molecular plant.11(9):1210-1213.

    He Y., Zhu M., Wang L., Wu J.,Wang Q., Wang R. & Zhao Y. (2019). Improvements of TKC Technology Accelerate Isolation of Transgene-Free CRISPR/Cas9-Edited Rice Plants. Rice ScienceScience. 26(2): 109-117.

    Huy Le, Nhung Hong Nguyen, Dong Thị Ta, Thao Nhu Thi Le, Thao Phuong Bui, Ngoc Thu Le, Cuong Xuan Nguyen, Hardy Rolletschek, Gary Stacey, Minviluz G. Stacey, Ngoc Bich Pham, Phat Tien Do & Ha Hoang Chu (2020). CRISPR/Cas9-Mediated Knockout of Galactinol Synthase-Encoding Genes Reduces Raffinose Family Oligosaccharide Levels in Soybean Seeds. Frontiers in Plant Science.11: 612942.

    Inui H., Shiota N., Ido Y., Inoue T., Hirose S., Kawahigashi H., Ohkawa Y. &Ohkawa H. (2001). Herbicide Metabolism and Tolerance in the Transgenic Rice Plants Expressing Human CYP2C9 and CYP2C19. Pesticide Biochemistry and Physiology.71(3):156-169.

    Janni M., Gullì M., Maestri E., Marmiroli M., Valliyodan B., Nguyen H. T. &Marmiroli N. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany.71(13):3780-3802.

    Jiang W., Bikard D., Cox D., Zhang F. &Marraffini L.A. (2013a). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology.31(3):233-239.

    Jiang W., Zhou H., Bi H., Fromm M., Yang B. &Weeks D.P. (2013b). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic acids research.41(20):e188.

    Jung J.H. &Seo Y. (2017). Challenges in wide implementation of genome editing for crop improvement. Journal of Crop Science and Biotechnology.20(2):129-135.

    Klap C., Yeshayahou E., Bolger A.M., Arazi T., Gupta S.K., Shabtai S., Usadel B., Salts Y.&Barg R. (2017). Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnology Journal. 15: 634-647.

    Lenaerts B., Collard B.C.Y. &Demont M. (2019). Review: Improving global food security through accelerated plant breeding. Plant science : an international journal of experimental plant biology.287:110207-110207.

    Li J., Meng X., Zong Y., Chen K., Zhang H., Liu J., Li J. &Gao C. (2016a). Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nature plants.2:16139.

    Li J., Zhang X., Sun Y., Zhang J., Du W., Guo X., Li S., Zhao Y. &Xia L. (2018). Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene. Journal of integrative plant biology.60(7):536-540.

    Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G. &Li H. (2016b). Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System. Frontiers in plant science.

    Liang Z., Chen K., Tingdong L., Zhang Y., Wang Y., Zhao Q., Liu J., Huawei Z., Liu C., Ran Y. &Gao C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications.8:14261.

    Liang Z., Chen K., Zhang Y., Liu J., Yin K., Qiu J.L. &Gao C. (2018). Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nature Protocols.13:413-430.

    Liu D., Chen X., Liu J., Ye J. &Guo Z. (2012). The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of experimental botany.63(10):3899-3911.

    Lou D., Wang H., Liang G. &Yu D. (2017). OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice. Frontiers in plant science.8:993.

    Ma J., Chen J., Wang M., Ren Y., Wang S., Lei C., Cheng Z. &Sodmergen (2018). Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. Journal of experimental botany.69(5):1051-1064.

    Malnoy M., Viola R., Jung M.H., Koo O.J., Kim S., Kim J.S., Velasco R. &Nagamangala K.C. (2016). DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci.7:1904.

    Meng X., Yu H., Zhang Y., Zhuang F., Song X., Gao S., Gao C. &Li J. (2017). Construction of a Genome-Wide Mutant Library in Rice Using CRISPR/Cas9. Mol Plant. 10(9):1238-1241.

    Minkenberg B., Xie K. &Yang Y. (2017). Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes. The Plant journal : for cell and molecular biology.89(3):636-648.

    Nawaz G., Usman B., Peng H., Zhao N., Yuan R., Liu Y. &Li R. (2020). Knockout of pi21 by crispr/cas9 and itraq-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line. Genes.11(7):735.

    Oz M.T, Altpeter A., Karan R., Merotto A. &Altpeter F. (2021). CRISPR/Cas9-Mediated Multi-Allelic Gene Targeting in Sugarcane Confers Herbicide Tolerance. Frontier in Genome Editing.3:673566.

    Sarmast M. (2016). Genetic transformation and somaclonal variation in conifers. Plant Biotechnology Reports. 10:309-325.

    Shen C., Que Z., Xia Y., Tang N., Li D., He R. &Cao M. (2017). Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. Journal of Plant Biology.60:539-547.

    Shimatani Z., Fujikura U., Ishii H., Matsui Y., Suzuki M., Ueke Y., Taoka K.I., Terada R., Nishida K. &Kondo A. (2018). Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant physiology and biochemistry.131:78-83.

    Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T. &Kondo A. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology.35:441-443.

    Sun Y., Zhang X., Wu C., He Y., Ma Y.,Hou H., Guo X., Du W., Zhao Y. &Xia L. (2016). Engineering Herbicide-Resistant Rice Plants through CRISPR/Cas9-Mediated Homologous Recombination of Acetolactate Synthase. Molecular plant.9(4):628-631.

    Svitashev S., Schwartz C., Lenderts B., Young J.K. &Mark Cigan A. (2016). Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications.7:13274-13274.

    Te Z., Lin C.Y. &Shen Z.C. (2011). Development of Transgenic Glyphosate-Resistant Rice with G6 Gene Encoding 5-Enolpyruvylshikimate-3Phosphate Synthase. Agricultural Sciences in China.10(9):1307-1312.

    Wang F., Wang C., Liu P., Lei C., Hao W., Gao Y., Liu Y.G. &Zhao K. (2016). Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PloS one.11(4):e0154027.

    Wang M., Wang S., Liang Z., Shi W., Gao C. &Xia G. (2018). From genetic stock to genome editing: gene exploitation in wheat. Trends in Biotechnology. 36: 160-172.

    Woo J.W., Kim J., Kwon S.I., Corvalán C., Cho S.W., Kim H., Kim S.G., Kim S.T., Choe S. &Kim J.S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature biotechnology.33(11):1162-1164.

    Yin X., Biswal A.K., Dionora J., Perdigon K.M., Balahadia C.P.,Mazumdar S., Chater C., Lin H.C., Coe R.A., Kretzschmar T., Gray J.E., Quick P.W. &Bandyopadhyay A. (2017). CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep.36(5):745-757.

    Yoon Y., Seo D.H., Shin H., Kim H.J., Kim C.M. &Jang G. (2020). The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. Agronomy.10(6):788.

    Yu Q., Jalaludin A.,Han H., Chen M., Sammons R.D. &Powles S.B. (2015). Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance. Plant physiology.167(4):1440-1447.

    Yu S., Ali J., Zhang C., Li Z. &Zhang Q. (2020). Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa. Theor Appl Genet.133(5):1427-1442.

    Zeng X., Luo Y., Vu N.T.Q., Shen S., Xia K. &Zhang M. (2020). CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biology.20.

    Zhao H., Wang X., Jia Y., Minkenberg B., Wheatley M., Fan J., Jia M.H., Famoso A., Edwards J.D., Wamishe Y., Valent B., Wang G.L. &Yang Y. (2018). The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nature communications.9(1):2039.

    Zhou J., Peng Z., Long J., Sosso D., Liu B., Eom J. S., Huang S., Liu S., Vera CruzC., Frommer W.B., White F.F. &Yang B. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant journal : for cell and molecular biology.82(4):632-643.

    ZhouJ.P., XinX.H., He Y., ChenH.Q., LiQ., TangX., ZhongZ.H., DengK.J., ZhengX.L., AkherS.A., CaiG.Z., QiY.P.&ZhangY.(2018). Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep. 38(4): 475-485.