Received: 17-07-2019
Accepted: 14-11-2019
DOI:
Views
Downloads
How to Cite:
Study on Improving the Synthesis of Multi-enzymes (Cellulase, α-Amylaseand Glucoamylase) from Aspergillus nigerA45.1 by Mutation and Optimal Condition of Solid State Fermentation
Keywords
Mutant, enzyme, solid state ferrmentation
Abstract
The study was conducted to enhance fungi strain and optimize the condition of solid state fermentation for improving the synthesis of multi-enzymes (cellulase, α-amylase and glucoamylase). Aspergillus nigerA45.1 strain was selected for simultaneous mutation treatment by UV and N-methyl-N -nitro-N-nitrosoguanidine (NTG) with mutagenic doses of 0, 30, 60, 90, 120, 150 and 180 minutes to enhancce the secretion of multil-enzymes. After mutation treatments, the Aspergillus sp. GA15 strain with the highest activity of glucoamylase, alpha amylase and celulase enzymes was optimized the fermentation condition to produced multi-enzyme by solid state fermentation. The result found the optimal condition to ferment Aspergillus sp. GA15 was obtained in 5 days fermentation of 2 days old fungi with wheat bran substrate, 1% glucose, 1% urea supplymentation, 50% moisture, pH 5.5 and 30C. Particularly, the activity of glucoamylase, alpha amylase and celulase enzyme was 76,75 U/g; 50 U/g and 40,11 U/g, respectively, which was higher 2,8; 1,29 and 3,3 times compared to normal conditions.
References
Abdullah R., Ikram-Ul-Haq T.I., Butt Z. & Khattak M.I. (2013). Random mutagenesis for enhanced production of alpha amylase by AspergillusoryzaeIIB-3. Pak. J. Bot.45(1): 269-274.
Alva S., Anupama J., Savla J., Chiu Y., Vyshali P., Shruti M., Yogeetha B., Bhavya D., Purvi J. & Ruchi K. (2007). Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. African journal of Biotechnology. 6(5): 576.
Ariffin H., Abdullah N., Umi Kalsom M., Shirai Y. & Hassan M. (2006). Production and characterization of cellulase by Bacillus pumilusEB3. Int. J. Eng. Technol. 3(1): 47-53.
Bedan D.S., Aziz G.M. & Al-Sa’ady A.J. (2014). Optimum conditions for α-amylase production by Aspergillus nigermutant isolate using solid state fermentation. Current Research in Microbiology and Biotechnology. 2(4): 450-456.
Bhavya D. (2007). Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. African journal of Biotechnology. 6(5): 576-581.
Ellaiah P., Adinarayana K., Bhavani Y., Padmaja P. & Srinivasulu B. (2002). Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillusspecies. Process Biochemistry. 38(4): 615-620.
Fawzi E.M. & Hamdy H.S. (2011). Improvement of carboxymethyl cellulase production from Chaetomium cellulolyticumNRRL 18756 by mutation and optimization of solid state fermentation. African Journal of Microbiology Research. 5(26): 4687-4696.
Ghani M., Aman A., Rehman H.U., Siddiqui N.N. & Qader S.A. (2013). Strain improvement by mutation for enhanced production of starch‐saccharifying glucoamylase from Bacillus licheniformis. Starch‐Stärke. 65(9‐10): 875-884.
Grajek W. (1987). Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation. Applied microbiology and biotechnology.26(2): 126-129.
Hameed U., Shahzadi K., Javed M.M., Ali S. & Qadeer M. (2005). Cotton saccharifying activity of cellulases by Trichoderma harzianumUM-11 in shake flask. International Journal of Botany.
Vũ Văn Hạnh, Quyền Đình Thi & Nguyễn Thị Thu Thủy (2012). Nâng cao độc lực diệt rệp đào của chủng nấm kí sinh côn trùng Lecanicilium bằng đột biến tia cực tím (UV) và N methyl-N’ nitro-N nitrosoguanidine (NTG) nhằm sản xuất thuôc trừ sâu sinh học. Vietnam Journal of Science and Technology.50(2): 197.
Ho H. & Ho K. (2015). Fungal Strain Improvement of Aspergillus brasiliensisfor Overproduction of Xylanase in Submerged Fermentation through UV Irradiation and Chemicals Mutagenesis. Journal of Advances in Biology & Biotechnology.3(3): 117-131.
Kaur B., Oberoi H. & Chadha B. (2014). Enhanced cellulase producing mutants developed from heterokaryotic Aspergillusstrain. Bioresource technology. 156: 100-107.
Kumari S., Bhattacharya S. & Das A. (2012). Solid-state fermentation and characterization of amylase from a thermophilic Aspergillus nigerisolated from Municipal Compost soil, Journal of Chemical. Biological and Physical Sciences (JCBPS). 2(2): 836.
Li X.H., Yang H.J., Roy B., Park E.Y., Jiang L.J., Wang D. & Miao Y.G. (2010). Enhanced cellulase production of the Trichoderma viridemutated by microwave and ultraviolet. Microbiological Research. 165(3): 190-198.
Miller G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry. 31(3): 426-428.
Nicolás-Santiago D., Regalado-González C., García-Almendárez B., Fernández F.J., Téllez-Jurado A. & Huerta-Ochoa S. (2006). Physiological, morphological, and mannanase production studies on Aspergillus nigeruam-gs1 mutants. Electronic Journal of Biotechnology. 9(1): 0-0.
Pathak S.S., Sandhu S.S. & Rajak R. (2015). Mutation Studies on Fungal Glucoamylase: A Review. Int. J. Pharma Bio Sci. 5(2): 297-308.
Raju E., Divakar G., Swetha C., Geetha J. &Satish P. (2012). Strain improvement of Aspergillus nigerfor glucoamylase by physical and chemical mutagens. Int Res J Pharm App Sci. 2: 79-91.
Reddy G.P.K., Sridevi A., Kumar K.D., Ramanjaneyulu G., Ramya A., Kumari B.S. & Reddy B.R. (2017). Strain Improvement of Aspergillus nigerfor the Enhanced Production of Cellulase in Solid State Fermentation. Microbial Biotechnology: Technological Challenges and Developmental Trends: 201.
Shafique S., Bajwa R. & Shafique S. (2011). Strain improvement in Trichoderma viridethrough mutation for overexpression of cellulase and characterization of mutants using random amplified polymorphic DNA (RAPD). African Journal of Biotechnology.10(84): 19590-19597.
Sharada R., Venkateswarlu G., Venkateshwar S. & Rao M.A. (2013). Productionof cellulase -a review. International Journal of Pharmaceutical. Chemical & Biological Sciences. 3(4).
Singh S., Sharma V., Soni M. & Das S. (2011). Biotechnological applications of industrially important amylase enzyme. International Journal of Pharma and Bio Sciences. 2: 486-496.
Singh S., Sharma V., Soni M. L. & Sinha S. (2013). Effect of UV induced mutation on amylase producing potential of Bacillus subtilis(2620). International Journal of Pharma and Bio Sciences.4: 62-68.
Sukumaran R.K., Singhania R.R. & Pandey A. (2005). Microbial cellulases-production, applications and challenges.
Vardhini R.S., Naik B.R., Neelima M. & Ramesh B. (2013). Screening and production of α-amylase from Aspergillus nigerusing zero, value material for solid state fermentation. International Journal of Pharmacy and Pharmaceutical Sciences. 5(1): 55-60.
Vu V.H., Pham T.A. & Kim K. (2009). Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology. 37(4): 267-271.
Vu V.H., Pham T.A. & Kim K. (2010). Improvement of a fungal strain by repeated and sequential mutagenesis and optimization of solid-state fermentation for the hyper-production of raw-starch-digesting enzyme. J.Microbiol Biotechnol. 20(4): 718-726.
Vu V.H., Pham T.A. & Kim K. (2011). Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology.39(1): 20-25.