Received: 25-07-2014
Accepted: 09-10-2015
DOI:
Views
Downloads
How to Cite:
Calcineurin B-Like Protein Cbl4 and Cbl5 Participate in SignalTransductioninGerminating Rice (Oryza sativaL.) under Water Submergence
Keywords
OsCBL(calcineurin B-likein rice), OsCIPK15(calcineurin B-like interacting protein kinase 15), Submergence, Oryza sativa
Abstract
OsCIPK15is a key regulator of starch degradation in rice due to submergence. This gene receives submergence signal via calcineurin B-like (OsCBL) proteins, which act as the Ca2+sensors, and whose role has yet to be established. In the present study, we compared the transcriptional regulation of CBLsin germinating rice embryos under water submergence. The trans-activation of OsCBLpromoters was tested by examining the effects of Ca2+. We used rice protoplasts to study the OsCBLs-OsCIPK15 protein interactions. We found that OsCBL4and OsCBL5were transcriptionally regulated under submergence.The Ca2+sensors OsCBL4 and OsCBL5 wereinvolved in this system and interactedon the plasma-membrane with OsCIPK15 in Ca2+dependent manner. Our results suggest that Ca2+signaling formed under submergence are inducedby OsCBL4and OsCBL5 which then interact with OsCIPK15 to activate genes involving instarch catabolism to provide energy for rice germination.
References
Albrecht, V., Weinl, S., Blazevic, D., D’Angelo, C., Batistic, O., Kolukisaoglu, U., Bock, R., Schulz, B., Harter, K., and Kudla, J. (2003). The calcium sensor CBL1 integrates plants responses to abiotic stresses. Plant Journal, 36: 457 - 470.
Alpi, A., Beevers, H. (1983). Effects of O2 concentration on rice seedling. Plant Physiology, 71: 30 - 34.
Anil VS, Rao KS. 2001. Calcium-mediated signal transduction in plants: A perspective on the role of Ca2+ and CDPKs during early plant development. Journal of Plant Physiology, 158: 1237 - 1256
Batistič, O., Waadt, R., Steinhorst, L., Held, K., and Kudla, J. (2010). CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant Journal, 61: 211 - 222.
D’Angelo, C., Weinl, S., Batistič, O., Pandey, G.K., Cheong, Y.H., Schultke, S., Albrecht, V., Ehlert, B., Schulz, B., Harter, K., Luan, S., Bock, R., and Kudla, J. (2006). Alternative complex formation of the Ca2+ - regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant Journal, 48: 857 - 872.
Gu, Z., Ma, B., Jiang, Y., Chen, Z., Su, X., and Zhang, H. (2008). Expression analysis of the calcineurin B-line gene family in rice (Oryza sativa L.) under environmental tresses. Gene, 415: 1 - 12.
Hepler, P.K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell, 17: 2142 - 2155.
Horie, T., Karahara, I., and Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central locus on rice plants. Rice, 5: 11.
Kolukisaoglu, U., Weinl, S., Blazervic, D., Batistic, O., and Kudla, J. (2004). Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology, 134: 43 - 58.
Kudahettige, N.P., Pucciariello, C., Alpi, A., and Perata, P. (2011). Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants. Plant Biology, 4: 611 - 619.
Kudla, J., Xu, Q., Harter, K., Gruissem, W., and Luan, S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proceedings of the National Academy of Science. USA, 96: 4718 - 4723.
Kurusu, T., Hamada, J., Nokajima, H., Kitagawa, Y., Kiyoduka, M., Takahashi, A., Hanamata, S., Ohno, R., Hayashi, T., Okada, K., Koga, J., Hirochika, H., Yamane, H., and Kuchitsu, K. (2010). Regulation of Microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by Calcium B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiology, 153: 678 - 692.
Lee, K.W., Chen, P.W., Lu, C.A., Chen, S., Ho, T.H.D., and Yu, S.M. (2009). Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci. Signal., 2: ra61.
Liu, J., and Zhu, J.K. (1998). A calcium sensor homolog required for plant salt tolerance. Science, 280: 1943 - 1945.
Loreti, E., Alpi, A., and Perata, P. (2003). α-amylase expression under anoxia in rice seedlings: an update. Russian Journal of Plant Physiology, 50: 737 - 742.
Lu, C.A., Ho, T.H.D., Ho, S.L., and Yu, S.M. (2002). Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of α-amylase gene expression. Plant Cell, 14: 1963 - 1980.
Lu, C.A., Lin, C.C., Lee, K.W., Chen, J.L., Huang, L.F., Ho, S.L., Liu, H.J., Hsing, Y.L., and Yu, S.M. (2007). The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell, 19: 2484 - 2499.
Luan, S. (2008). The CBL-CIPK network in plant calcium signaling.Trends in Plant Science, 14(1). doi:10.1016/j.tplants.2008.10.005.
Martinez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., and Quitero, F.J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143: 1001 - 1012
Perata, P. and Alpi, A. (1993).Plant responses to anaerobiosis. Plant Science, 93: 1 - 17.
Perata, P., Pozueta-Romero, J., Akazawa, T., and Yamaguchi, J. (1992). Effect of anoxia on starch breakdown in rice and wheat seeds. Planta, 188: 611 - 618.
Perata, P., Guglielminetti, L., and Alpi, A. (1997). Mobilization of endosperm reserves in cereal seeds under anoxia. Annals of Botany, 79: 49 - 56
Piao, H.l., Xuan, Y.H., Park, S.H., Je, B.I., Park, S.J., Park, S.H., Kim, C.M., Huang, J., Wang, G.K., Kim, M.J., Kang, S.M., Le, I.J., Kwon, T.R., Kim, Y.H., Yeo, U.S., Yi, G., Son, D.Y., and Han, C.H. (2010). OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress condition in rice plants. Molecules and Cells, 30: 19 - 27
Pineros M and Tester M. 1997. Calcium channels in higher plant cells: selectivity, regulation and pharmacology. Journal of Experimental Botany, 48: 551 - 577.
Sadiq, I., Fanucchi, F., Paparelli, E., Alpi, E., Bachi, A., Alpi, A., and Perata, P. (2011). Proteomic identification of differentially expressed proteins in the anoxic rice coleoptile. Journal of Plant Physiology, 168: 2234 - 2243.
Sedbrook, J.C., Kronebusch, P.J., Borisy, G.G., Trewavas, A.J., and Masson, P.H. (1996). Trangenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedlings. Plant Physiology, 111: 243 - 257.
Sheen, J. (2002). A transient expression assay using Arabidopsis mesophyll protoplasts. http://genetics.mgh.harvard.edu/sheenweb/
Shi, H., Ishitani, M., Kim, C., and Zhu, J.K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Science. USA, 97: 6896 - 6901.
Subbaiah, C.C., Bush, D.S., and Sachs, M.M. (1994a). Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell, 6: 1747 - 1762.
Weinl, S. and Kudla, J. (2009). The CBL-CIPK Ca2+ - decoding signaling network: function and perspectives. New Phytologist. 184: 517 - 528.
Xu, J., Li, H.D., Chen, L.Q., Yang, Y., Liu, L.L., He, L., and Wu, W.H. (2006). A protein kinase, interacting with two Calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 125: 1347 - 1360.
Yemelyanov, V.V., Shishova, M.S., Chirkova, T.V., and Lindberg, S.M. (2011). Anoxia-induced elevation of cytosolic Ca2+ concentration depends of different Ca2+ sources in rice and wheat protoplast. Planta, 234: 271 - 280.
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocol, 2: 1565 - 1572.
Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J., Wang, P., Li, Y., Liu, B., and Feng, D. (2011). A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 7: 30.