Received: 30-11-2022
Accepted: 04-08-2023
DOI:
Views
Downloads
How to Cite:
Effect of Biofertilizers Containing Strains of Phototrophic Purple Non-sulfur, Nitrogen-Fixing and Phosphorous-Solubilizing Bacteria on Growth and Yield of Black beans (Vigna cylindrica(L.) Skeels) Grown in Pots
Keywords
Biofertilizers, black beans, nitrogen-fixing, phosphorous-solubilizing, Rhodopseudomonas palustris
Abstract
The study was conducted to determine the efficacy of biofertilizers carrying strains of nitrogen-fixing and phosphorous-solubilizing purple non-sulfur bacteria (Rhodopseudomonas palustris) TLS06, VNW02, VNW64 and VNS89 (CPVS-NP) on black beans growth and yield. The experiment followed a completely randomized block design with 5 treatments and 4 replications, each of which corresponded to a pot. The treatments were (i) 100% N, P;(ii) CPVS-NP combined with 75% N, P;(iii) CPVS-NP combined with 50% N, P;(iv) CPVS-NP only;(v) not supplying CPVS-NP and no chemical fertilizers. The results showed that supplying CPVS-NP combined with75% N, P increased PNSB density and obtained the plant height, leaves number per plant, leaf length, leaf width and the branches per plant equivalent to or higher than those in the treatment fertilized with100% N, P. Supplying CPVS-NP plus 75% N, P enhanced yield by 22.0% compared to that in the treatment fertilized with 100% N, P.
References
Aguilera Y., Mojica L., Rebollo-Hernanz M., Berhow M., De Mejía E.G. & Martín-Cabrejas M.A. (2016). Black bean coats: New source of anthocyanins stabilized by -cyclodextrin copigmentation in a sport beverage. Food Chemistry. 212: 561-570.
Arora N.K. (2018). Agricultural sustainability and food security. Environmental Sustainability.1(3): 217-219.
Fukami J., Cerezini P. & Hungria M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express. 8(1): 1-12.
Gogoi N., Baruah K.K. & Meena R.S. (2018). Grain legumes: impact on soil health and agroecosystem. In Legumes for soil health and sustainable management. Springer, Singapore.
Harada N., Nishiyama M., Otsuka S. & Matsumoto S. (2005). Effects of inoculation of phototrophic purple bacteria on grain yield of rice and nitrogenase activity of paddy soil in a pot experiment. Soil Science & Plant Nutrition. 1(3): 361-367.
Htwe A.Z., Moh S.M., Soe K.M., Moe K. & Yamakawa T. (2019). Effects of biofertilizer produced from Bradyrhizobiumand Streptomyces griseoflavuson plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of mung bean, cowpea, and soybean. Agronomy. 9(2): 77.
Kantha T., Kantachote D. & Klongdee N. (2015). Potential of biofertilizers from selected Rhodopseudomonas palustrisstrains to assist rice (Oryza sativaL. subsp. indica) growth under salt stress and to reduce greenhouse gas emissions.Annals of Microbiology. 65(4): 2109-2118.
Khuong N.Q., Kantachote D., Nookongbut P., Onthong J., Xuan L.N.T. & Sukhoom A. (2020). Mechanisms of acid-resistant Rhodopseudomonas palustrisstrains to ameliorate acidic stress and promote plant growth. Biocatalysis and Agricultural Biotechnology. 24: 101520.
Khuong N.Q., Kantachote D., Onthong J. & Sukhoom A. (2017). The potential of acid-resistant purple nonsulfur bacteria isolated from acid sulfate soils for reducing toxicity of Al3+and Fe2+using biosorption for agricultural application.Biocatalysis and Agricultural Biotechnology.12: 329-340.
Khuong N.Q., Kantachote D., Onthong J., Xuan L.N.T. & Sukhoom A. (2018). Enhancement of rice growth and yield in actual acid sulfate soils by potent acid-resistant Rhodopseudomonas palustrisstrains for producing safe rice. Plant and Soil. 429(1): 483-501.
Khuong N.Q., Kantachote D., Thuc L.V., Nookongbut P., Xuan L.N.T., Nhan T.C., Xuan N.T.T. & Tantirungkij M. (2020). Potential of Mn2+ - resistant purple nonsulfur bacteria isolated from acid sulfate soils to act as bioremediators and plant growth promoters via mechanisms of resistance. Journal of Soil Science and Plant Nutrition. 20(4): 2364-2378.
Kumar S.M., Reddy C.G., Phogat M. & Korav S. (2018). Role of bio-fertilizers towards sustainable agricultural development: a review. Journal of Pharmacognosy and Phytochemistry. 7: 1915-1921.
Lee S.K., Lur H.S. & Liu C.T. (2021). From lab to farm: Elucidating the beneficial roles of photosynthetic bacteria in sustainable agriculture. Microorganisms. 9(12): 2453.
Lý Ngọc Thanh Xuân, Phạm Duy Tiễn, Lê Vĩnh Thúc & Nguyễn Quốc Khương (2019). Hiệu quả của chế phẩm hữu cơ vi sinh chứa bốn dòng vi khuẩn Rhodopseudomonas sp.đối với hấp thu đạm, nhôm và sắt trong hạt lúa trồng trên đất phèn huyện Phụng Hiệp, tỉnh Hậu Giang ở điều kiện nhà lưới. Tạp chí Khoa học Trường Đại học Cần Thơ. 55(CĐ Công nghệ Sinh học): 133-140.
Mạc Khách Trung, Cái Đình Hòa, Nguyễn Ngọc Bình, Nguyễn Trung Bình, Bùi Ngọc Thao, Đặng Thị Thu Trang, Huỳnh Văn Hồng &Phan Sĩ Hùng (2017). Nghiên cứu tuyển chọn các giống đậu ăn hạt (đậu xanh, đậu đen) phù hợp sản xuất trên chân đất cao, khó khăn nguồn nước tưới tại Bình Định. Viện Khoa học kỹ thuật Nông nghiệp Duyên hải Nam Trung Bộ.
Nguyễn Quốc Khương, Lê Thị Như Ý, Lê Trần Thiện Sơn, Trần Dương Tiển, Diệp Trọng Phúc, Nguyễn Thị Hồng Nghi, Lê Thị Mỹ Thu, Trần Ngọc Hữu, Lê Vĩnh Thúc, Trần Chí Nhân & Lý Ngọc Thanh Xuân (2022). Ảnh hưởng của vi khuẩn quang dưỡng không lưu huỳnh màu tía cố định đạm đến sinh trưởng, năng suất và độ phì nhiêu đất trồng hành tím (Allium ascalonicumL.). Tạp chí Nông nghiệp và Phát triển nông thôn. 10: 67-74.
Nguyễn Quốc Khương, Lý Ngọc Thanh Xuân, Nguyễn Thị Xuân Đào, Trần Chí Nhân & Trần Văn Dũng (2019). Ảnh hưởng của chế phẩm hữu cơ vi sinh đến sinh trưởng và năng suất lúa trên đất phèn Hòn Đất trong điều kiện nhà lưới. Tạp chí Khoa học Trường Đại học Cần Thơ. 55(CĐ CNSH): 89-94.
Pahalvi H.N., Rafiya L., Rashid S., Nisar B. & Kamili A.N. (2021). Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizer. Springer, Cham. 2: 1-20.
Rahman K.A. & Zhang D. (2018). Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability. 10(3): 759.
Roriz M., Carvalho S.M., Castro P.M. & Vasconcelos M.W. (2020). Legume biofortification and the role of plant growth-promoting bacteria in a sustainable agricultural era. Agronomy. 10(3): 435.
Sakarika M., Spanoghe J., Sui Y., Wambacq E., Grunert O., Haesaert G., Spiller M. & Vlaeminck S.E. (2020). Purple non‐sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microbial Biotechnology. 13(5): 1336-1365.
Sansinenea E. (2019). Bacillusspp.: as plant growth-promoting bacteria. Secondary metabolites of plant growth promoting rhizomicroorganisms.pp. 225-237.
Singh B., Singh J.P., Kaur A. & Singh N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International. 101: 1-16.
Srivastav A.L. (2020). Chemical fertilizers and pesticides: role in groundwater contamination. In Agrochemicals detection, treatment and remediation. Butterworth-Heinemann. pp. 143-159.
Walling E. & Vaneeckhaute C. (2020). Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management. 276:111211.
Zheng Z., Li J., Li J., Sun H. & Liu Y. (2019). Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes. Food Hydrocolloids. 97: 105222.