Identification of SSR Markers Linked to sh2and su1Genes in Sweetcorn Lines

Received: 09-08-2022

Accepted: 02-03-2023

DOI:

Views

2

Downloads

0

Section:

NÔNG HỌC

How to Cite:

Duc, N., Trung, N., Tuan, P., Anh, N., Hang, P., Hoi, P., & Liet, V. (2024). Identification of SSR Markers Linked to sh2and su1Genes in Sweetcorn Lines. Vietnam Journal of Agricultural Sciences, 21(2), 149–160. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1110

Identification of SSR Markers Linked to sh2and su1Genes in Sweetcorn Lines

Nguyen Trung Duc (*) 1 , Nguyen Quoc Trung 2 , Pham Quang Tuan 1 , Nguyen Thi Nguyet Anh 1 , Pham Thu Hang 3 , Pham Xuan Hoi 3 , Vu Van Liet 4

  • 1 Viện Nghiên cứu và Phát triển cây trồng, Học viện Nông nghiệp Việt Nam
  • 2 Khoa Công nghệ sinh học, Học viện Nông nghiệp Việt Nam
  • 3 Viện Di truyền Nông nghiệp, Viện Khoa học Nông nghiệp Việt Nam
  • 4 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • Keywords

    SSR markers, sweet corn, su1, sh2, sh2sh2su1su1

    Abstract


    The objectives of this study were to identify SSRmarkers closely associated with shrunken2 (sh2)andsugary1 (su1) genesandapplication forselecting target genotypes on 30 S3 sweet corn lines. Four SSR markers closely associated with the sh2gene (umc1320, umc2276, umc1273, bnlg1257) and four SSR markers closely associated with the su1gene (umc1142, umc1031, bnlg1937, umc2061) were investigated in three check lines. The results showed that the markers umc2276 and umc1031 were suitable to identify the sh2and su1genes, respectively. Using these markers for screeningon 30 S3 sweet corn lines identified 7 lines homozygous for recessive gene sh2sh2(D04, D09, D13, D21, D22, D24, D25), 2 lines homozygous for recessive gene su1su1(D19, D30) and 2 lines double homozygous recessive for sh2sh2su1su1(D11, D14). Phenotypic evaluation confirmed the similarity to genotypes and proved high accuracy of the selected molecular markers. Total soluble solids of the sh2sh2su1su1lines were higher than sh2sh2lines and superior to that of the su1su1lines. These SSR markers and 11 selected genotypes played a vital role for the rapid development of high-quality inbred lines for specialty corn hybrid breeding in Vietnam.

    References

    Baseggio M., Murray M., Magallanes-Lundback M., Kaczmar N., Chamness J., Buckler E.S., Smith M.E., Dellapenna D., Tracy W.F. & Gore M.A. (2020). Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn. Plant Genome. 13(1): e20008.

    Baveja A., Muthusamy V., Panda K.K., Zunjare R.U., Das A.K., Chhabra R., Mishra S.J., Mehta B.K., Saha S. & Hossain F. (2021). Development of multinutrient-rich biofortified sweet corn hybrids through genomics-assisted selection of shrunken2, opaque2, lcyEand crtRB1genes. Journal of Applied Genetics. 62(3): 419-429.

    Brewbaker J.L. & Martin I. (2015). Breeding tropical vegetable corns. Plant Breeding Reviews. 39: 125-198.

    Chen B., Feng S., Hou J., Zhu Y., Bao F., Han H., Tan H., Wang G. & Zhao F. (2022). Genome-wide transcriptome analysis revealing the genes related to sugar metabolism in kernels of sweet corn. Metabolites. 12.

    Chhabra R., Hossain F., Muthusamy V., Baveja A., Mehta B. & Zunjare R.U. (2019). Mapping and validation of Anthocyanin1 pigmentation gene for its effectiveness in early selection of shrunken2 gene governing kernel sweetness in maize. Journal of Cereal Science. 87: 258-265.

    Dellaporta S.L., Wood J. & Hicks J.B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter. 1(4): 19-21.

    Faostat (2021). Trade data: crops and livestock products. Retrieved fromhttps://www.fao.org/ faostat/ en/#data/TPon Sep 10, 2021.

    Feng Z.L., Liu J., Fu F.L. & Li W.C. (2008). Molecular mechanism of sweet and waxy in maize. International Journal of Plant Breeding and Genetics. 2(2): 93-100.

    Greenacre M., Groenen P.J.F., Hastie T., D’enza A.I., Markos A. & Tuzhilina E. (2022). Principal component analysis. Nature Reviews Methods Primers. 2(1): 100.

    Hossain F., Nepolean T., Vishwakarma A. K., Pandey N., Prasanna B.M. & Gupta H.S. (2015). Mapping and validation of microsatellite markers linked to sugary1 and shrunken2 genes in maize (Zea mays L.). Journal of Plant Biochemistry and Biotechnology. 24(2): 135-142.

    Hu Y., Colantonio V., Müller B. S., Leach K. A., Nanni A., Finegan C., Wang B., Baseggio M., Newton C.J. & Juhl E.M. (2021). Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nature Communications. 12(1): 1-13.

    Kleinhenz M.D. & Bumgarner R.N. (2012). Using °Brix as an indicator of vegetable quality instructions for measuring °brix in cucumber, leafy greens, sweet corn, tomato, and watermelon. Fact sheet HYG-1653-12, Agriculture and Natural Resources, The Ohio State University.

    Mehta B., Hossain F., Muthusamy V., Baveja A., Zunjare R., Jha S.K. & Gupta H.S. (2017a). Microsatellite-based genetic diversity analyses of sugary1-, shrunken2- and double mutant- sweet corn inbreds for their utilization in breeding programme. Physiology and Molecular Biology of Plants. 23(2): 411-420.

    Mehta B., Hossain F., Muthusamy V., Zunjare R., Sekhar J. & Gupta S. (2017b). Analysis of responses of novel double mutant (sh2sh2/su1su1) sweet corn hybrids for kernel sweetness under different sowing-and harvest-time. Indian Journal of Agricultural Sciences. 87: 1543-1548.

    Nguyễn Thị Nhài, Đặng Ngọc Hạ, Nguyễn Văn Diện, Đỗ Văn Dũng & Kiều Quang Luận (2020). Kết quả nghiên cứu chọn tạo và khảo nghiệm giống ngô đường lai ĐL89. Tạp chí Khoa học và Công nghệ Nông nghiệp Việt Nam. 4(113): 10-15.

    Nguyễn Trung Đức, Phạm Quang Tuân, Nguyễn Thị Nguyệt Anh & Vũ Văn Liết (2020). Nghiên cứu tuyển chọn một số dòng ngô ngọt phục vụ chọn tạo giống ngô trái cây dựa trên kiểu hình và chỉ thị phân tử. Tạp chí Khoa học Nông nghiệp Việt Nam. 18(12): 1102-1113.

    Phạm Thị Thanh Hương, Nguyễn Thị Hoàng Anh, Lê Thị Thanh Huyền & Lê Thị Hường (2019). Đánh giá khả năng chịu hạn của một số giống ngô ngọt bằng phương pháp gây hạn nhân tạo trong điều kiện nhà lưới. Tạp chí Nông nghiệp và Phát triển nông thôn. 20: 24-28.

    Revilla P., Anibas C.M. & Tracy W.F. (2021). Sweet corn research around the world 2015-2020. Agronomy. 11(3).

    Ruanjaichon V., Khammona K., Thunnom B., Suriharn K., Kerdsri C., Aesomnuk W., Yongsuwan A., Chaomueang N., Thammapichai P., Arikit S., Wanchana S. & Toojinda T. (2021). Identification of gene associated with sweetness in corn (Zea maysL.) by genome-wide association study (GWAS) and development of a functional SNP marker for predicting sweet corn. Plants (Basel). 10(6).

    Shull G.H. (1909). A pure-line method in corn breeding. Journal of Heredity. os-5(1): 51-58.

    Tracy W.F., Shuler S.L. & Dodson-Swenson H. (2019). The use of endosperm genes for sweet corn improvement. in Plant Breeding Reviews. 43(1): 215-241.

    Trần Thị Thanh Hà, Vũ Văn Liết, Vũ Thị Bích Hạnh, Nguyễn Văn Hà, Dương Thị Loan & Hoàng Thị Thùy (2020). Chọn lọc và đánh giá khả năng kết hợp của một số dòng ngô ngọt. Tạp chí Khoa học Nông nghiệp Việt Nam. 18(12): 1067-1076.

    Whitt S.R., Wilson L.M., Tenaillon M.I., Gaut B.S. & Buckler E.S. (2002). Genetic diversity and selection in the maize starch pathway. Proceedings of the National Academy of Sciences. 99(20): 12959.

    Wilson L.M., Whitt S.R., IbaéñEz A.M., Rocheford T.R., Goodman M.M. & Buckler E.S.I.V. (2004). Dissection of maize kernel composition and starch production by candidate gene association. The Plant Cell. 16(10): 2719-2733.

    Yao H., Zhou Q., Li J., Smith H., Yandeau M., Nikolau B.J. & Schnable P.S. (2002). Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2interval of maize. Proceedings of the National Academy of Sciences. 99(9): 6157-6162.

    Zhang R., Huang L., Deng Y., Chi J., Zhang Y., Wei Z. & Zhang M. (2017). Phenolic content and antioxidant activity of eight representative sweet corn varieties grown in South China. International Journal of Food Properties. 20(12): 3043-3055.