Review: Bacteriocins - Classification, Antibacterial Activities and Applications

Received: 01-06-2022

Accepted: 27-09-2022

DOI:

Views

4

Downloads

2

Section:

TỔNG QUAN

How to Cite:

Thao, N., Hue, N., Son, D., & Canh, N. (2024). Review: Bacteriocins - Classification, Antibacterial Activities and Applications. Vietnam Journal of Agricultural Sciences, 20(10), 1427–1440. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1067

Review: Bacteriocins - Classification, Antibacterial Activities and Applications

Ninh Thi Thao (*) 1 , Nong Thi Hue 1 , Dinh Truong Son 1 , Nguyen Xuan Canh 1

  • 1 Khoa Công nghệ sinh học, Học viện Nông nghiệp Việt Nam
  • Keywords

    Agriculture, bacteriocins, food preservation, pharmaceutics, probiotic

    Abstract


    Bacteriocins produced bybacteria are ribosomally synthesized peptides or proteins with antimicrobial activity that either kill or inhibit the growth of closely-related or non-related bacterial strains. Bacteriocins appear to be a weapon against microorganisms due to their specific properties of natural origin, high structural and functional diversity and heat stability. Recent studies have identified bacteriocins for application in food technology as natural bio-preservatives or in agriculture as biological control agents. Bacteriocins also present a potential approach for the treatment of pathogenic microbial infections and cancer diseases in humans and a promising alternative for replacing conventional antibiotics to treat multidrug-resistant bacteria. However, the majority of application-oriented studies were mainly conducted in laboratory conditions and focused on bacteriocins from Gram-positive bacteria. In this review, we summarized the classification and antibacterial activities of bacteriocins as well as discussed current achievements and potential applications of bacteriocins in the food preservationand inagricultural and pharmaceutical fields. Our paper provides an overview of bacteriocins, thus, orients the application of bacteriocins in Vietnam.

    References

    Abbasiliasi S., Tan J.S., Ibrahim T.A.T., Bashokouh F., Ramakrishnan N.R., Mustafaab S. & Ariff A.B. (2017). Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Advances. 7: 29395-29420.

    Alvarez-Sieiro P., Montalbán-López M., Mu D. & Kuipers O.P. (2012). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology. 31: 881-888.

    Arlindo S., Calo P., Franco C., Prado M., Cepeda A. & Barros-Velázquez J. (2006). Single nucleotide polymorphism analysis of the enterocin P structural gene of Enterococcus faeciumstrains isolated from nonfermented animal foods. Molecular Nutrition & Food Research. 50: 1229-1238.

    Benítez-Chao D.F., León-Buitimea A., Lerma-Escalera J.A. & Morones-Ramírez J.R. (2021). Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivoModels. Frontiers in Microbiology. 12: 630695.

    Bierbaum G. & Sahl H.G. (2009). Lantibiotics: Mode of Action, Biosynthesis and Bioengineering. Current Pharmaceutical Biotechnology. 10: 218.

    Cesa-Luna C., Alatorre-Cruz J.M., Carreño-López R., Quintero-Hernández V. & Baez A. (2021). Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Polish Journal of Microbiology. 70(2): 143-159.

    Chandrakasan G., Rodríguez-Hernández A.I., del Rocío López-Cuellar, Palma-Rodríguez H.M. & Chavarría-Hernández N. (2019). Bacteriocin encapsulation for food and pharmaceutical applications: advances in the past 20 years. Biotechnology Letters. 41: 453-469.

    Chumchalová J. & Smarda J. (2003). Human tumor cells are selectively inhibited by colicins. Folia Microbiologica. 48(1): 111-115.

    de Kwaadsteniet M., ten Doeschate K. & Dicks L. M.T. (2008). Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactissubsp. lactis isolate from freshwater catfish (Clarias gariepinus). Applied and Environmental Microbiology. 74: 547-549.

    da Silva Sabo S., Vitolo M., González J.M.D. & de Souza Oliveira R.P. (2014). Overview of Lactobacillus plantarumas a promising bacteriocin producer among lactic acid bacteria. Food Research International. 64: 527-536.

    Desriac F., Defer D., Bourgougnon N., Brillet B., Le Chevalier P. & Fleury Y. (2010). Bacteriocin as Weapons in the Marine Animal-Associated Bacteria Warfare: Inventory and Potential Applications as an Aquaculture Probiotic. Marine Drugs. 8(4): 1153-1177.

    Devi S.M. & Halami P.M. (2011). Detection and Characterization of Pediocin PA-1/AcH like Bacteriocin Producing Lactic Acid Bacteria. Current Microbiology. 63: 181-185.

    Diez-Gonzalez F. (2007). Applications of bacteriocins in livestock. Current Issues in Intestinal Microbiology. 8: 15.

    Duquesne S., Destoumieux-Garzón D., Peduzzi J. & Rebuffat S. (2007). Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural Product Reports. 24: 708-734.

    Gálvez A., Abriouel H. & Omar N.B. (2011). Food applications and regulation. In: Prokaryotic Antimicrobial Peptides. Springer: Berlin/Heidelberg, Germany. 353-390.

    Gálvez A., Abriouel H., López R.L. & Omar N.B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology. 120(1-2): 51-70.

    Gharsallaoui A., Oulahal N., Joly C. & Degraeve P. (2016). Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Critical Reviews in Food Science and Nutrition. 56: 1262-1274.

    Gillor O., Kirkup B.C. & Riley M.A. (2004). Colicins and microcins: the next generation antimicrobials. Advances in Applied Microbiology. 54: 129-146.

    Gray E.J., Lee K.D., Souleimanov A.M., Di Falco M.R., Zhou X., Ly A., Charles T.C., Driscoll B.T. & Smith D.L. (2006). A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensisNEB17: isolation and classification. Microbiological Research. 100(3): 545-554.

    Gratia A. (1925). Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. Comptes Rendus Biologies. 93: 1040-1041.

    Grilli E., Messina M., Catelli E., Morlacchini M. & Piva A. (2009). Pediocin A improves growth performance of broilers challenged with Clostridium perfringens. Poultry Science. 88: 2152-2158.

    Hassan H., Gomaa A., Subirade M., Kheadr E., St-Gelais D. & Fliss I. (2020). Novel design for alginate/resistant starch microcapsules controlling nisin release. International Journal of Biological Macromolecules. 153: 1186-1192.

    Héchard Y. & Sahl H.G. (2002). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie. 84: 545-557.

    Hernández-González J.C., Martínez-Tapia A., Lazcano-Hernández G., García-Pérez B.E. & Castrejón-Jiménez N.S. (2021). Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals. 11(4): 979.

    Hurst A. (1981). Nisin. Advances in Applied Microbiology. 27: 85-123.

    Irianto A. & Austin B. (2002). Probiotics in aquaculture. Journal of Fish Diseases. 25: 633-624.

    Jack R.W., Tagg J.R. & Ray B. (1995). Bacteriocins of gram-positive bacteria. Microbiology and Molecular Biology Reviews. 59: 171-200.

    Joerger M.C. & Klaenhammer T.R. (1986). Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus481. Journal of Bacteriology. 167: 439-446.

    Jordi B.J., Boutaga K., van Heeswijk C.M., van Knapen F. & Lipman L.J. (2001). Sensitivity of Shiga toxin-producing Escherichia coli(STEC) strains for colicins under different experimental conditions. FEMS Microbiology Letters. 204: 239-334.

    Jung D.S., Bodyfelt F.W. & Daechel M.A. (1992). Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenesin fluid milk. Journal of Dairy Science. 75: 387-393.

    Kamarajan P., Hayami T., Matte B., Liu Y., Danciu T., Ramamoorthy A., Worden F., Kapila S. & Kapila Y. (2015). Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One. 10(7): e0131008.

    Kaur B., Balgir P.P., Mittu B., Kumar, B., Garg N. (2013). Biomedical applications of fermenticin HV6b isolated from Lactobacillus fermentumHV6b MTCC10770. BioMed Research International.

    Kerr A. & Bullard G. (2020). Biocontrol of Crown Gall by Rhizobium rhizogenes: Challenges in Biopesticide Commercialisation. Agronomy. 10: 1126.

    Khorshidian N., Khanniri E., Mohammadi M., Mortazavian A. M. & Yousefi M. (2021). Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeriamonocytogenes in Meat Products. Frontiers in microbiology. 12: 709959.

    Kim J.G., Park B.K., Kim S.U., Choi D., Nahm B.H., Moon J.S., Reader J.S., Farrand S.K. & Hwang I. (2006). Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan Horse antibiotic that controls crown gall. Proceedings of the National Academy of Sciences of the United States of America. 103(23): 8846-8851.

    Kim Y.K., Park I.S., Kim D.J., Nam B.H., Kim D.G., Jee Y.J. & An C.M. (2014). Identification and characterization of a bacteriocin produced by an isolated Bacillussp. SW1-1 that exhibits antibacterial activity against fish pathogens. Journal of the Korean Society for Applied Biological Chemistry. 57: 605-612.

    Kitching M., Mathur H., Flynn J., Byrne N., Dillon P., Sayers R., Rea M. C., Hill C. & Ross R.P. (2019). A live bio-therapeutic for mastitis, containing Lactococcus lactisDPC3147 with comparable efficacy to antibiotic treatment. Frontiers in Microbiology. 10: 2220.

    Kumar B., Balgir P.P., Kaur B., Mittu B. & Chauhan A. (2012). In vitro cytotoxicity of native and rec-pediocin CP2 against cancer cell lines: a comparative study. Pharmaceutica Analytica Acta. 3(8): 1-4.

    López-Cuellar M.D.R., Rodríguez-Hernández A.I. & Chavarría-Hernández N. (2016). LAB bacteriocin applications in the last decade. Biotechnology and Biotechnological Equipment. 30(6): 1039-1050.

    Martín-Escolano R., Cebrián R., Maqueda M., Romero D., Rosales M.J., Sánchez-Moreno M. & Marín C. (2020). Assessing the effectiveness of AS-48 in experimental mice models of Chagas’ disease. Journal of Antimicrobial Chemotherapy. 75: 1537-1545.

    McCall J.O. & Sizemore R.K. (1979). Description of a bacteriocinogenic plasmid in Beneckea harveyi. Applied and Environmental Microbiology. 38(5): 974-979.

    Michel-Briand Y. & Baysse C. (2022). The pyocins of Pseudomonas aeruginosa. Biochimie. 84: 499-510.

    Nazari M. & Smith D.L. (2020). A PGPR-produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications. Frontiers in Plant Science. 11: 916.

    Ninawe A.S. & Selvin J. (2009). Probiotics in shrimp aquaculture: avenues and challenges. Critical Reviews in Microbiology. 35: 43-66.

    Ovchinnikov K.V., Kranjec C., Thorstensen T., Carlsen H. & Diep D.B. (2020). Successful Development of Bacteriocins into Therapeutic Formulation for Treatment of MRSA Skin Infection in a Murine Model. Antimicrobial Agents and Chemotherapy. 64: e00829-00820.

    Pepi M. & Focardi S. (2021). Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. International Journal of Environmental Research and Public Health. 18(11): 5723.

    Pircalabioru G.G., Popa L.I., Marutescu L., Gheorghe I., Popa M., Barbu I.C., Cristescu R. & Chifiriuc M.C. (2021). Bacteriocins in the Era of Antibiotic Resistance: Rising to the Challenge. Pharmaceutics. 13: 196.

    Resende J.A., Borges M.L., Pacheco K.D., Ribeiro I.H., Cesar D.E., Silva V.L., Diniz C.G. & Apolônio A.C.M. (2016). Antibiotic resistance in potentially bacteriocinogenic probiotic bacteria in aquaculture environments. Aquaculture Research. 48(5): 13047.

    Riley M.A. (2009). Bacteriocins, biology, ecology, and evolution. In Encyclopedia of Microbiology. Elsevier: Amsterdam. The Netherlands. 32-44.

    Savadogo A., Ouattara A.T.C., Bassole H.I. & Traore S.A. (2006). Bacteriocins and lactic acid bacteria - A minireview. African Journal of Biotechnology. 5(9): 678-683.

    Scholl D. (2017). Phage Tail-Like Bacteriocins. Annual Review of Virology. 4: 453-467.

    Schwinghamer T., Souleimanov A., Dutilleul P. & Smith D. (2016). Supplementation with solutions of lipo-chitooligosacharide Nod Bj V (C18: 1, MeFuc) and thuricin 17 regulates leaf arrangement, biomass, and root development of canola (Brassica napus[L.]). Plant Growth Regulation. 78: 31-41.

    Simons A., Alhanout K. & Duval R.E. (2020). Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms. 8(5): 639.

    Singh N. & Abraham J. (2014). Ribosomally synthesized peptides from natural sources. The Journal of Antibiotics. 67: 277-289.

    Soltani S., Hammami R., Cotter P.D., Rebuffat S., Said L.B., Gaudreau H., Bédard F., Biron E., Drider D. & Fliss I. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Letters. 45(1): fuaa039.

    Stern N.J., Svetoch E.A., Eruslanov B.V., Perelygin V.V., Mitsevich E.V., Mitsevich I.P., Pokhilenko V.D., Levchuk V.P., Svetoch O.E. & Seal B.S. (2006). Isolation of a Lactobacillus salivariusstrain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuniin the chicken gastrointestinal system. Antimicrobial Agents and Chemotherapy. 50: 3111-3116.

    Subramanian S. & Smith D.L. (2015). Bacteriocins from the rhizosphere microbiome-from an agriculture perspective. Frontiers in Plant Science. 6: 909.

    Tagg J.R., Dajani A.S. & Wannamaker L.W. (1976). Bacteriocins of gram-positive bacteria. Bacteriological reviews. 40(3): 722-756.

    Taoka Y., Maeda H., Jo J.Y., Kim S.M., Park S.I., Yoshikawa T. & Sakata T. (2006). Use of live and dead probiotic cells in tilapia Oreochromis niloticus. Fisheries Science. 72: 755-766.

    Todorov S.D., Wachsman M., Tomé E., Dousset X., Destro M.T., Dicks L.M.T., de Melo Franco B.D.G, Vaz-Velho M. & Drider D. (2010). Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiology. 27: 869-879.

    van Staden A.D.P., Heunis T., Smith C., Deane S., Dicks L.M.T. (2016). Efficacy of lantibiotic treatment of Staphylococcus aureus - induced skin infections, monitored by in vivo bioluminescent imaging. Antimicrobial Agents and Chemotherapy. 60: 3948-3955.

    Xavier J., Gopalan N. & Ramana K. (2017). Immobilization of lactic acid bacteria and application of bacteriocin for preservation of fruit juices and bacteriocin production. Defence Life Science Journal. 2: 231-238.

    Yang E., Fan L., Yan J., Jiang Y., Doecette C., Fillmore S. & Walker B. (2018). Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express. 8: 10.

    Yang S.C., Lin C.H., Sung C.T. & Fang J.Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology. 5: 241.

    Yusuf M., Ichwan S.J.A. & Hamid T.H.T.A. (2015). Anti-proliferative activities of purified bacteriocin from Enterococcus mundtiistrain C4L10 isolated from the caecum of Malaysian non-broiler chicken on cancer cell lines. International Journal of Pharmacy and Pharmaceutical Sciences. 7(2): 334-337.

    Zai A.S., Ahmad S. & Rasool S.A. (2009). Bacteriocin production by indigenous marine catfish associated Vibriospp. Pakistan Journal of Pharmaceutical Sciences. 22: 162-167.