Biological Characterization of Streptomycessp. VNUA30 Strain with Antagonistic Activity Against Pathogenic Fungi CausingDisease on some Plants

Received: 04-05-2022

Accepted: 05-07-2022

DOI:

Views

0

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Mai, N., Hai, N., Thu, N., Dao, T., & Canh, N. (2024). Biological Characterization of Streptomycessp. VNUA30 Strain with Antagonistic Activity Against Pathogenic Fungi CausingDisease on some Plants. Vietnam Journal of Agricultural Sciences, 20(7), 954–964. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1023

Biological Characterization of Streptomycessp. VNUA30 Strain with Antagonistic Activity Against Pathogenic Fungi CausingDisease on some Plants

Nguyen Thi Thanh Mai (*) 1 , Nguyen Thanh Hai 2 , Nguyen Thi Thu 2 , Tran Thi Dao 2 , Nguyen Xuan Canh 2

  • 1 Trung tâm Sinh học thực nghiệm, Viện Ứng dụng Công nghệ
  • 2 Khoa Công nghệ sinh học, Học viện Nông nghiệp Việt Nam
  • Keywords

    Actinomycetes, Streptomyces, plant pathogenic fungi

    Abstract


    Diseases caused by pathogenic fungi account for 80% of plant diseases resulting in a global crop yieldreduction. The use of chemical fungicides for the control of fungal diseases causes environmental pollution and affects human health. Biocontrol using actinomycetes having antifungal activity was reported to be effective and biosafe. This studyfound that actinomycete strain VNUA30 exhibited a broad-spectrum antifungal activity against five plant pathogenic fungi, i.e. Colletotrichum gloeosporioides, Fusarium oxysporumf.sp. cubense(FocTR4), Corynespora casiicola, Sclerotium rolfsii, and Diaporthe sp. with inhibition rate of 62.50%; 52.58%; 72.22%; 57.77%; and 95.37%, respectively. Biological studies showed that strain VNUA30 was able to produce melanoid pigment, siderophore, H2S and IAA, assimilate citrate, reduce nitrate, liquefy gelatin, degrade urea and produce extracellular enzymes chitinase, cellulase, xylanase, protease, and pectinase. Combining the morphological and biochemical characteristics with the 16S rRNA sequence analysis, this strain was identified as Streptomyces deccanensis VNUA30. The results confirmed that actinomycete strain VNUA30 is a potential strain as bio-control agent for fungal diseases on plants with high efficiency.

    References

    Aktar W., Sengupta D. & Chowdhury A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology. 2(1): 1-12.

    Butler M. & Day A. (1998). Fungal melanins: A review. Canadian Journal of Microbiology. 44(12): 1115-1136.

    Dastager S., Li W., Dayanand A., Tang S., Tian X., Zhi X., Xu L. & Jiang C. (2006). Seperation, identification and analysis of pigment (melanin) production in Streptomyces. African Journal of Biotechnology.5(11)

    Glickmann E. & Dessaux Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology. 61(2): 793-796.

    Goodfellow M., Kämpfer P., Busse H., Trujillo M., Suzuki K., Ludwig W. & Whitman W. (2012). Bergey's manual® of systematic bacteriology: Volume five the actinobacteria, part a(pp. 171-206). Springer New York

    Gu L., Zhang K., Zhang N., Li X. & Liu Z. (2020). Control of the rubber anthracnose fungus Colletotrichum gloeosporioidesusing culture filtrate extract from Streptomyces deccanensisQY-3. Antonie van Leeuwenhoek. 113(11): 1573-1585.

    Guarnaccia V. & Crous P.W. (2017). Emerging citrus diseases in Europe caused by species of Diaporthe. IMA Fungus. 8(2): 317-334.

    Guarnaccia V., Groenewald J.Z., Woodhall J., Armengol J., Cinelli T., Eichmeier A., Ezra D., Fontaine F., Gramaje D. & Gutierrez-Aguirregabiria A. (2018). Diaporthediversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia-Molecular Phylogeny and Evolution of Fungi. 40(1): 135-153.

    Gulve R. & Deshmukh RM.A.M. (2011). Enzymatic activity of actinomycetes isolated from marine sedimentes. Recent Research in Science and Technology. 3(5).

    Jing T., Zhou D., Zhang M., Yun T., Qi D., Wei Y., Chen Y., Zang X., Wang W. & Xie J. (2020). Newly isolated Streptomysessp. JBS5-6 as a potenial biocontrol agent to control banana fusarium witl: Genome sequencing and secondary metabolite cluster profiles. Frontiers in Microbiology. 11:602591.

    Kelly Kenneth L. (1958). Color - Name Block. Journal of Research of the National Bureau of Standards. 61(5):427.

    Küster E. & William S. (1964). Production of hydrogen sulfide by streptomycetes and methods for its detection. Applied Microbiology. 12(1): 46-52.

    Louden B., Haarmann D. & Lynne A. (2011). Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education. 12(1): 51-53.

    MacKenzie K., Sumabat L. & Vallad G. (2018). A review of Corynespora cassiicolaand its increasing relevance to tomato in Florida. Plant Health Progress. 19(4): 303-309.

    Malacrinò A., Seng K., An C., Ong S. & O’Rourke M. (2020). Integrated pest management for yard-long bean (Vigna unguiculata subsp. Sesquipedalis) in Cambodia. Crop Protection. 135: 104811.

    Murthy P., Kumari J., Basavaraju N., Janardhan N., Janardhan D. & Devamma M. (2018). In vitroinfluence of bio-controlling agents against Sclerotium rolfsiicausing stem rot sickness of groundnut (Arachis hypogaeaL.). Pharma Innovation. 7: 05-08.

    Nguyễn Xuân Cảnh, Hồ Tú Cường, Nguyễn Thị Định & Phạm Thị Hiếu (2016). Nghiên cứu chủng xạ khuẩn có khả năng đối kháng với vi khuẩn Vibrio parahaemolyticusgây bệnh trên tôm. Tạp chí Khoa học Nông nghiệp Việt Nam. 14(11): 1809-1816

    Pattanapipitpaisal P. & Kamlandharn R. (2012). Screening of chitinolytic actinomycetes for biological control of Sclerotium rolfsiistem rot disease of chilli. Songklanakarin Journal of Science & Technology. 34(4).

    Phoulivong S., Cai L., Chen H., McKenzie E., Abdelsalam K., Chukeatirote E. & Hyde K. (2010). Colletotrichum gloeosporioidesis not a common pathogen on tropical fruits. Fungal Diversity. 44(1): 33-43.

    Pujari J., Yakkundimath R. & Byadgi A. (2015). Image processing based detection of fungal diseases in plants. Procedia Computer Science. 46: 1802-1808.

    Qi D., Zou L., Zhou D., Chen Y., Gao Z., Feng R., Zhang M., Li K., Xie J. & Wang W. (2019). Taxonomy and broad-spectrum antifungal activity of Streptomycessp. SCA3-4 isolated from rhizosphere soil of Opuntia stricta. Frontiers in Microbiology. 10: 1390.

    Rajivgandhi G., Muneeswaran T., Maruthupandy M., Ramakritinan C.M., Saravanan K., Ravikumar V. & Manoharan N. (2018). Antibacterial and anticancer potential of marine endophytic actinomycetes Streptomyces coeruleorubidusGRG 4 (KY457708) compound against colistin resistant uropathogens and A549 lung cancer cells. Microbial Pathogenesis. 125: 325-335.

    Sadeghian M., Bonjar G. & Sirchi G. (2016). Post harvest biological control of apple bitter rot by soil-borne Actinomycetes and molecular identification of the active antagonist. Postharvest Biology and Technology. 112: 46-54.

    Sharf W., Javaid A., Shoaib A. & Khan I. (2021). Induction of resistance in chili against Sclerotium rolfsii by plant-growth-promoting rhizobacteria and Anagallis arvensis. Egyptian Journal of Biological Pest Control. 31(1): 1-11.

    Sharma M. & Manhas R. (2020). Purification and characterization of salvianolic acid B from Streptomyces sp. M4 possessing antifungal activity against fungal phytopathogens. Microbiol. research. 237: 126478.

    Sharma P., Kalita M. & Thakur D. (2016). Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52. Frontiers in Microbiology. 7: 347.

    Shirling E. & Gottlieb D. (1966). Methods for characterization of Streptomycesspecies. International Journal of Systematic Bacteriology. 16(3): 313-340.

    Sivaperumal P., Kamala K. & Rajaram R. (2015). Bioactive DOPA melanin isolated and characterised from a marine actinobacterium Streptomycessp. MVCS6 from Versova coast. Natural Product Research. 29(22): 2117-2121.

    Someya N. (2008). Biological control of fungal plant diseases using antagonistic bacteria. Jounral of General Plant Pathology. 74(6): 459-460.

    Tresner H. & Backus E. (1963). System of color wheels for streptomycete taxonomy. Applied Microbiology. 11(4): 335-338.

    Tresner H. & Danga F. (1958). Hydrogen sulfide production by Streptomycesas a criterion for species differentiation. Journal of Bacteriology. 76(3): 239-244.

    Wang W., Qiu Z., Tan H. & Cao L. (2014). Siderophore production by actinobacteria. Biometals. 27(4): 623-631.

    Wei Y., Zhao Y., Zhou D., Qi D., Li K., Tang W., Chen Y., Jing T., Zang X. & Xie J. (2020). A newly isolated Streptomycessp. YYS-7 with a broad-spectrum antifungal activity improves the banana plant resistance to Fusarium oxysporumf. sp. cubensetropical race 4. Frontiers in Microbiology. 11:1712.

    Weisburg W., Barns S., Pelletier D. & Lane D. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology. 173(2):697-703

    Zhang K., Gu L., Zhang Y., Liu Z. & Li X. (2020). Dinactin from a new producer, Streptomyces badius gz-8, and its antifungal activity against the rubber anthracnose fungus Colletotrichum gloeosporioides. Microbiological Research. 240: 126548

    Zhang L., Cenci A., Rouard M., Zhang D., Wang Y., Tang W. & Zheng S. (2019). Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporumf. sp. cubensetropical race 4. Scientific Reports. 9(1): 1-14.

    Zou N., Zhou D., Chen Y., Lin P., Chen Y., Wang W., Xie J. & Wang M. (2021). A Novel Antifungal Actinomycete Streptomycessp. Strain H3-2 Effectively Controls Banana Fusarium Wilt. Frontiers in Microbiology. 12:706647.