Study on Improving the Synthesis of Multi-enzymes (Cellulase, α-Amylaseand Glucoamylase) from Aspergillus nigerA45.1 by Mutation and Optimal Condition of Solid State Fermentation

Received: 17-07-2019

Accepted: 14-11-2019

DOI:

Views

2

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Huong, D., Dang, P., & Hanh, V. (2024). Study on Improving the Synthesis of Multi-enzymes (Cellulase, α-Amylaseand Glucoamylase) from Aspergillus nigerA45.1 by Mutation and Optimal Condition of Solid State Fermentation. Vietnam Journal of Agricultural Sciences, 17(8), 666–678. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/591

Study on Improving the Synthesis of Multi-enzymes (Cellulase, α-Amylaseand Glucoamylase) from Aspergillus nigerA45.1 by Mutation and Optimal Condition of Solid State Fermentation

Duong Thu Huong (*) 1 , Pham Kim Dang 1 , Vu Van Hanh 2

  • 1 Khoa Chăn nuôi, Học viện Nông nghiệp Việt Nam
  • 2 Viện Công nghệ sinh học, Viện Hàn lâm Khoa học Việt Nam
  • Keywords

    Mutant, enzyme, solid state ferrmentation

    Abstract


    The study was conducted to enhance fungi strain and optimize the condition of solid state fermentation for improving the synthesis of multi-enzymes (cellulase, α-amylase and glucoamylase). Aspergillus nigerA45.1 strain was selected for simultaneous mutation treatment by UV and N-methyl-N -nitro-N-nitrosoguanidine (NTG) with mutagenic doses of 0, 30, 60, 90, 120, 150 and 180 minutes to enhancce the secretion of multil-enzymes. After mutation treatments, the Aspergillus sp. GA15 strain with the highest activity of glucoamylase, alpha amylase and celulase enzymes was optimized the fermentation condition to produced multi-enzyme by solid state fermentation. The result found the optimal condition to ferment Aspergillus sp. GA15 was obtained in 5 days fermentation of 2 days old fungi with wheat bran substrate, 1% glucose, 1% urea supplymentation, 50% moisture, pH 5.5 and 30C. Particularly, the activity of glucoamylase, alpha amylase and celulase enzyme was 76,75 U/g; 50 U/g and 40,11 U/g, respectively, which was higher 2,8; 1,29 and 3,3 times compared to normal conditions.

    References

    Abdullah R., Ikram-Ul-Haq T.I., Butt Z. & Khattak M.I. (2013). Random mutagenesis for enhanced production of alpha amylase by AspergillusoryzaeIIB-3. Pak. J. Bot.45(1): 269-274.

    Alva S., Anupama J., Savla J., Chiu Y., Vyshali P., Shruti M., Yogeetha B., Bhavya D., Purvi J. & Ruchi K. (2007). Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. African journal of Biotechnology. 6(5): 576.

    Ariffin H., Abdullah N., Umi Kalsom M., Shirai Y. & Hassan M. (2006). Production and characterization of cellulase by Bacillus pumilusEB3. Int. J. Eng. Technol. 3(1): 47-53.

    Bedan D.S., Aziz G.M. & Al-Sa’ady A.J. (2014). Optimum conditions for α-amylase production by Aspergillus nigermutant isolate using solid state fermentation. Current Research in Microbiology and Biotechnology. 2(4): 450-456.

    Bhavya D. (2007). Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in solid state culture. African journal of Biotechnology. 6(5): 576-581.

    Ellaiah P., Adinarayana K., Bhavani Y., Padmaja P. & Srinivasulu B. (2002). Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillusspecies. Process Biochemistry. 38(4): 615-620.

    Fawzi E.M. & Hamdy H.S. (2011). Improvement of carboxymethyl cellulase production from Chaetomium cellulolyticumNRRL 18756 by mutation and optimization of solid state fermentation. African Journal of Microbiology Research. 5(26): 4687-4696.

    Ghani M., Aman A., Rehman H.U., Siddiqui N.N. & Qader S.A. (2013). Strain improvement by mutation for enhanced production of starch‐saccharifying glucoamylase from Bacillus licheniformis. Starch‐Stärke. 65(9‐10): 875-884.

    Grajek W. (1987). Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation. Applied microbiology and biotechnology.26(2): 126-129.

    Hameed U., Shahzadi K., Javed M.M., Ali S. & Qadeer M. (2005). Cotton saccharifying activity of cellulases by Trichoderma harzianumUM-11 in shake flask. International Journal of Botany.

    Vũ Văn Hạnh, Quyền Đình Thi & Nguyễn Thị Thu Thủy (2012). Nâng cao độc lực diệt rệp đào của chủng nấm kí sinh côn trùng Lecanicilium bằng đột biến tia cực tím (UV) và N methyl-N’ nitro-N nitrosoguanidine (NTG) nhằm sản xuất thuôc trừ sâu sinh học. Vietnam Journal of Science and Technology.50(2): 197.

    Ho H. & Ho K. (2015). Fungal Strain Improvement of Aspergillus brasiliensisfor Overproduction of Xylanase in Submerged Fermentation through UV Irradiation and Chemicals Mutagenesis. Journal of Advances in Biology & Biotechnology.3(3): 117-131.

    Kaur B., Oberoi H. & Chadha B. (2014). Enhanced cellulase producing mutants developed from heterokaryotic Aspergillusstrain. Bioresource technology. 156: 100-107.

    Kumari S., Bhattacharya S. & Das A. (2012). Solid-state fermentation and characterization of amylase from a thermophilic Aspergillus nigerisolated from Municipal Compost soil, Journal of Chemical. Biological and Physical Sciences (JCBPS). 2(2): 836.

    Li X.H., Yang H.J., Roy B., Park E.Y., Jiang L.J., Wang D. & Miao Y.G. (2010). Enhanced cellulase production of the Trichoderma viridemutated by microwave and ultraviolet. Microbiological Research. 165(3): 190-198.

    Miller G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry. 31(3): 426-428.

    Nicolás-Santiago D., Regalado-González C., García-Almendárez B., Fernández F.J., Téllez-Jurado A. & Huerta-Ochoa S. (2006). Physiological, morphological, and mannanase production studies on Aspergillus nigeruam-gs1 mutants. Electronic Journal of Biotechnology. 9(1): 0-0.

    Pathak S.S., Sandhu S.S. & Rajak R. (2015). Mutation Studies on Fungal Glucoamylase: A Review. Int. J. Pharma Bio Sci. 5(2): 297-308.

    Raju E., Divakar G., Swetha C., Geetha J. &Satish P. (2012). Strain improvement of Aspergillus nigerfor glucoamylase by physical and chemical mutagens. Int Res J Pharm App Sci. 2: 79-91.

    Reddy G.P.K., Sridevi A., Kumar K.D., Ramanjaneyulu G., Ramya A., Kumari B.S. & Reddy B.R. (2017). Strain Improvement of Aspergillus nigerfor the Enhanced Production of Cellulase in Solid State Fermentation. Microbial Biotechnology: Technological Challenges and Developmental Trends: 201.

    Shafique S., Bajwa R. & Shafique S. (2011). Strain improvement in Trichoderma viridethrough mutation for overexpression of cellulase and characterization of mutants using random amplified polymorphic DNA (RAPD). African Journal of Biotechnology.10(84): 19590-19597.

    Sharada R., Venkateswarlu G., Venkateshwar S. & Rao M.A. (2013). Productionof cellulase -a review. International Journal of Pharmaceutical. Chemical & Biological Sciences. 3(4).

    Singh S., Sharma V., Soni M. & Das S. (2011). Biotechnological applications of industrially important amylase enzyme. International Journal of Pharma and Bio Sciences. 2: 486-496.

    Singh S., Sharma V., Soni M. L. & Sinha S. (2013). Effect of UV induced mutation on amylase producing potential of Bacillus subtilis(2620). International Journal of Pharma and Bio Sciences.4: 62-68.

    Sukumaran R.K., Singhania R.R. & Pandey A. (2005). Microbial cellulases-production, applications and challenges.

    Vardhini R.S., Naik B.R., Neelima M. & Ramesh B. (2013). Screening and production of α-amylase from Aspergillus nigerusing zero, value material for solid state fermentation. International Journal of Pharmacy and Pharmaceutical Sciences. 5(1): 55-60.

    Vu V.H., Pham T.A. & Kim K. (2009). Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology. 37(4): 267-271.

    Vu V.H., Pham T.A. & Kim K. (2010). Improvement of a fungal strain by repeated and sequential mutagenesis and optimization of solid-state fermentation for the hyper-production of raw-starch-digesting enzyme. J.Microbiol Biotechnol. 20(4): 718-726.

    Vu V.H., Pham T.A. & Kim K. (2011). Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology.39(1): 20-25.