DevelopingDirect Dry LAMP Method forField Diagnosis of African Swine Fever

Received: 06-11-2023

Accepted: 07-03-2024

DOI:

Views

2

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Ngan, M., Viliddeth, S., Giang, T., Hieu, D., Giang, N., & Anh, D. (2024). DevelopingDirect Dry LAMP Method forField Diagnosis of African Swine Fever. Vietnam Journal of Agricultural Sciences, 22(3), 322–330. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1270

DevelopingDirect Dry LAMP Method forField Diagnosis of African Swine Fever

Mai Thi Ngan (*) 1 , Souriya Viliddeth 1 , Tran Thi Huong Giang 1 , Dong Van Hieu 1 , Nguyen Thi Huong Giang 2 , Dang Huu Anh 1

  • 1 Khoa Thú y, Học viện Nông nghiệp Việt Nam
  • 2 Khoa Chăn nuôi Thú y, Trường Đại học Nông Lâm Bắc Giang
  • Keywords

    African Swine Fever, one-step dry LAMP, two-step dry LAMP, storage conditions

    Abstract


    African swine fever (ASF) is caused by the ASF virus (ASFV) of the family Asfarviridae with a mortality rate of up to 100%. Currently, studies on the LAMP method (Loop-mediated isothermal amplification) for ASF diagnosis are based onwet LAMP, which is not feasible for field application due to the requirement of cold conditions. This study aimedto evaluate the effectiveness of dry LAMP methods to support early field diagnosis of ASF. The gold standard real-time PCR method was used to evaluate the sensitivity and specificity of the direct dry LAMP method. The results show that the two-step dry LAMP method wasmore effective in DNA amplification than the one-step dry LAMP method. Both dry LAMP methods showed good DNA amplification efficiency in both storage conditions after 2 months.The sensitivity and specificity of the two-step dry LAMP method after 2.5 months at 4C were 88.1% and 100%. Thus, the dry LAMP method is promising as an early diagnosis tool for ASF, helping to support the screening of infected individuals at the field and to improve the effectiveness of prevention and control of ASF.

    References

    Dixon L.K., Chapman D.A., Netherton C.L. & Upton C. (2013). African swine fever virus replication and genomics. Virus Res. 173(1): 3-14.

    Hayashida K., Kajino K., Hachaambwa L., Namangala B. & Sugimoto C. (2015). Direct blood dry LAMP: a rapid, stable, and easy diagnostic tool for Human African Trypanosomiasis. PLoS Negl Trop Dis. 9(3): e0003578.

    James H.E., Ebert K., Mcgonigle R., Reid S.M., Boonham N., Tomlinson J.A., Hutchings G.H., Denyer M., Oura C.A., Dukes J.P. & King D.P. (2010). Detection of African swine fever virus by loop-mediated isothermal amplification. J Virol Methods. 164(1-2): 68-74.

    Mee P.T., Wong S., O'riley K.J., Da Conceição F., Bendita Da Costa Jong J., Phillips D.E., Rodoni B.C., Rawlin G.T. & Lynch S.E. (2020). Field Verification of an African Swine Fever Virus Loop-Mediated Isothermal Amplification (LAMP) Assay During an Outbreak in Timor-Leste. Viruses. 12(12).

    Nagamine K., Hase T. & Notomi T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 16(3): 223-229.

    Ngan M.T., Thi My Le H., Xuan Dang V., Thi Bich Ngoc T., Phan L. V., Thi Hoa N., Quang Lam T., Thi Lan N., Notsu K., Sekiguchi S., Yamazaki Y. & Yamazaki W. (2023). Development of a highly sensitive point-of-care test for African swine fever that combines EZ-Fast DNA extraction with LAMP detection: Evaluation using naturally infected swine whole blood samples from Vietnam. Veterinary Medicine and Science. 9(3): 1226-1233.

    Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N. & Hase T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12): e63-e63.

    Oscorbin I. & Filipenko M. (2023). Bst polymerase - a humble relative of Taq polymerase. Comput Struct Biotechnol J. 21: 4519-4535.

    Salim B., Hayashida K., Mossaad E., Nakao R., Yamagishi J. & Sugimoto C. (2018). Development and validation of direct dry loop mediated isothermal amplification for diagnosis of Trypanosoma evansi. Veterinary Parasitology.260: 53-57.

    Sánchez-Vizcaíno J.M., Mur L., Gomez-Villamandos J. C. & Carrasco L. (2015). An update on the epidemiology and pathology of African swine fever. J Comp Pathol. 152(1): 9-21.

    Thapa J., Maharjan B., Malla M., Fukushima Y., Poudel A., Pandey B.D., Hyashida K., Gordon S.V., Nakajima C. & Suzuki Y. (2019). Direct detection of Mycobacterium tuberculosis in clinical samples by a dry methyl green loop-mediated isothermal amplification (LAMP) method. Tuberculosis (Edinb). 117: 1-6.

    Tran D.H., Tran H.T., Le U.P., Vu X.D., Trinh T.B.N., Do H.D.K., Than V.T., Bui L.M., Vu V.V., Nguyen T.L., Phung H.T.T. & Le V.P. (2021). Direct colorimetric LAMP assay for rapid detection of African swine fever virus: A validation study during an outbreak in Vietnam. Transbound Emerg Dis. 68(4): 2595-2602.

    Wang D., Yu J., Wang Y., Zhang M., Li P., Liu M. & Liu Y. (2020). Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). J Virol Methods. 276: 113775.

    Yamazaki Y., Thongchankaew-Seo U., Nagao K., Mekata H. & Yamazaki W. (2020). Development and evaluation of a point-of-care test with a combination of EZ-Fast DNA extraction and real-time PCR and LAMP detection: evaluation using blood samples containing the bovine leukaemia DNA. Lett Appl Microbiol. 71(6): 560-566.

    Yoshikawa T., Matsuo T., Kawamura Y., Ohashi M., Yonekawa T., Kanda H., Notomi T. & Ihira M. (2014). Direct detection of human herpesvirus 6B by the LAMP method using newly developed dry-reagents. Journal of Virological Methods. 201: 65-67.