Assessment of Genetic Diversity of Bombyx moriBased on Coi Sequences

Received: 02-10-2023

Accepted: 26-01-2024

DOI:

Views

0

Downloads

0

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Nguyen, T., Nhai, N., Duc, H., Duy, N., Giang, P., Thinh, N., … Duc, N. (2024). Assessment of Genetic Diversity of Bombyx moriBased on Coi Sequences. Vietnam Journal of Agricultural Sciences, 22(2), 236–243. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1261

Assessment of Genetic Diversity of Bombyx moriBased on Coi Sequences

Tran Thi Binh Nguyen (*) 1 , Nguyen Thi Nhai , Ho Viet Duc , Nguyen Duc Duy , Pham Thu Giang , Nguyen Hoang Thinh , Nguyen Thi Nhien , Nguyen Huu Duc

  • 1 Khoa Công nghệ sinh học, Học viện Nông nghiệp Việt Nam
  • Keywords

    Bivoltine, multivoltine, COI, genetical diversity, mtDNA

    Abstract


    The main goal of study was to use nucleotide sequencing of the cytochrome c oxidase 1 (COI) gene to assess the genetic diversity of 9 bivoltine breeds and 5 native Vietnamese silkworm breeds. DNA Sequencing was carried out using by chain termination method. Data were analyzed by Bioedit, DNAsp and MEGA X softwareThe results indicated 17 polymorphic nucleotide substitution sites when comparing the COI gene sequence of the 14 silkworm breeds in this study with the sequence AB737913.1 on GenBank. Only one polymorphic nucleotide site appeared when comparing the 14 breeds with each other. These silkworm breeds were divided into 2 haplotypes, with a main concentration in haplotype 1. The genetic classification tree shows that 13 out of the 14 studied silkworm breeds were distributed in branch 2, which is the common branch of Chinese and European silkworm breeds. This outcome provides initial information for breeders to strategically use molecular markers in the conservation, exploitation, and development of the genetic resources of silkworm.

    References

    Alcudia-Catalma M.N., Conde M.Y.E.D., Tan I.Y.D. & Bautista M.A.M. (2021). First Report on the Characterization of Genetic Diversity of Philippine-reared Bombyx moriStrains Based on COI and ITS2. Philippine Journal of Science. 150.

    Allio R., Donega S., Galtier N. & Nabholz B. (2017). Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Molecular biology and evolution. 34(11): 2762-2772.

    Arunkumar K., Metta M. & Nagaraju J. (2006). Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx morifrom Chinese Bombyx mandarinaand paternal inheritance of Antheraea proylei mitochondrial DNA. Molecular Phylogenetics and Evolution. 40(2): 419-427.

    Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. & Struhl K. (1992). Short protocols in molecular biology. New York. 275: 28764-28773.

    Bindroo B.B. & Manthira Moorthy S. (2014). Genetic divergence, implication of diversity, and conservation of silkworm, Bombyx mori. International Journal of Biodiversity.

    Cameron S.L. (2014). Insect mitochondrial genomics: implications for evolution and phylogeny. Annual review of entomology. 59: 95-117.

    Fassina V.A., Bignotto T.S., Munhoz R.E.F., Fulan B., Bravo J.P., Garay L.B., Bespalhuk R., Das Neves Saez C.R., Pereira N.C. & Pessini G.M. (2014). Low Genetic Polymorphism at the Cytochrome C Oxidase I in Silkworm Strains of the Brazilian Germplasm Bank. Open Journal of Genetics..

    Guo Y., Shen Y.H., Sun W., Kishino H., Xiang Z.H. & Zhang, Z. (2011). Nucleotide diversity and selection signature in the domesticated silkworm, Bombyx mori, and wild silkworm, Bombyx mandarina. Journal of Insect Science. 11(1): 155.

    Hall T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series. Oxford. pp. 95-98.

    Hebert P.D., Cywinska A., Ball S.L. & Dewaard J.R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences. 270(1512): 313-321.

    Kim I.S., Bae J.S., Sohn H.D., Kang P.D., Ryu K.S., Sohn B.H., Jeong W.B. & Jin B.R. (2000). Genetic homogeneity in the domestic silkworm, Bombyx mori, and phylogenetic relationship between B. moriand the wild silkworm, B. mandarinausing mitochondrial COI gene sequences. International Journal of Industrial Entomology. 1(1): 9-17.

    Kim S.W., Kim M.J., Kim K.Y., Kim S.R. & Kim I. (2019). Complete mitochondrial genome of the silkworm strain, Chilseongjam Bombyx mori(Lepidoptera: Bombycidae), with a unique larval body marking. Mitochondrial DNA Part B. 4(2): 2853-2854.

    Kim S.W., Park J.S., Kim M.J., Kim K.Y., Kim S.R. & Kim I. (2021). Complete mitochondrial genome of the highly fecund Bombyx mori linnaeus, 1758 (Lepidoptera: Bombycidae) strain Jam 146. Mitochondrial DNA Part B. 6(8): 2278-2280.

    Kim M.J., Park J.S., Kim H., Kim S.R., Kim S.W., Kim K.Y., Kwak W. & Kim I. (2022). Phylogeographic relationships among Bombyx mandarina(Lepidoptera: Bombycidae) populations and their relationships to B. moriinferred from mitochondrial genomes. Biology. 11(1): 68.

    Librado P. & Rozas J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25(11): 1451-1452

    Li A., Zhao Q., Tang S., Zhang Z., Pan S. & Shen G. (2005). Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. Journal of Genetics. 84: 137-142.

    Nagaraju J. & Goldsmith M.R. (2002). Silkworm genomics–progress and prospects. Current Science. pp. 415-425.

    Nezhad M.S., Mirhosseini S., Gharahveysi S., Mavvajpour M. & Seidavi A. (2009). Analysis of genetic divergence for classification of morphological and larval gain characteristics of peanut cocoon silkworm (Bombyx moriL.) germplasm. Agri Environ. Sci. 6(5): 600-608.

    Nguyễn Thị Thanh Bình & Đặng Đình Đàn (2008). Nghiên cứu sự trùng lặp của một số giống tằm bản địa bằng phương pháp truyền thống kết hợp với chỉ thị phân tử RAPD. Tạp chí Khoa học Công nghê. 46(5): 37-42.

    Singh D., Kabiraj D., Sharma P., Chetia H., Mosahari P.V., Neog K. & Bora U. (2017). The mitochondrial genome of Muga silkworm(Antheraea assamensis) and its comparative analysis with other lepidopteran insects. PLoS One. 12(11): e0188077.

    Shimomura M., Minami H., Suetsugu Y., Ohyanagi H., Satoh C., Antonio B., Nagamura Y., Kadono-Okuda K., Kajiwara H., Nagaraju J., Goldsmith MR., Xia Q., Yamamoto K. & Mita K. (2009). KAIKObase: an integrated silkworm genome database and data mining tool. BMC genomics. 10: 1-8.

    Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution. 28(10): 2731-2739.

    Vimala S., Kalpana S., Ei-Syed E.S.A. & Mamatha D. (2020). Screening of Genetic Variance Based on COI Gene Analysis of Silkworm (Bombyx mori) Races. Advances in Computational and Bio-Engineering: Proceeding of the International Conference on Computational and Bio Engineering. 1(Springer): 287-298.

    Yukuhiro K., Sezutsu H., Tamura T., Kosegawa E. & Kiuchi M. (2011). Nucleotide sequence variation in mitochondrial COI gene among 147 silkworm (Bombyx mori) strains from Japanese, Chinese, European and moltinism classes. Genes & genetic systems. 86(5): 315-323.

    Zhang G.Z., Huang W.G., Zhang Y.L., Liu Y.W., Huang H.X., Liu Y.Q., Bi L.H. & Lu C. (2019). The complete mitochondrial genome of Yao silkworm (Bombyx mori). Mitochondrial DNA Part B. 4(2): 2811-2812.

    Zanatta D.B., Bravo J.P., Barbosa J.F., Munhoz R.E. & Fernandez M.A. (2009). Evaluation of economically important traits from sixteen parental strains of the silkworm Bombyx moriL. (Lepidoptera: Bombycidae). Neotropical Entomology. 38: 327-331.