Ngày nhận bài: 27-11-2024

Ngày duyệt đăng: 27-03-2019

Ngày xuất bản: 29-05-2024

DOI:

Lượt xem

1

Download

1

Chuyên mục:

NÔNG HỌC

Cách trích dẫn:

Le Thi Thu Huong (*) 1, 2 , Ngo Thi Thuong 1 , Nguyen Ngoc Kien 1 , Tran Thanh Hai 1

  • 1 Faculty of Environment, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
  • 2 Department of Chemistry, Faculty of Environment, Vietnam National University of Agriculture
  • Tài liệu tham khảo

    Ai L., Zhang C. &Chen Z. (2011). Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite.Journal of Hazardous Materials.192(3): 1515-1524.

    Aida Zubir N., Christelle Yacou A., Motuzas J., Zhang X., Song Zhao X. &Diniz da Costa J. C. (2015). The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO-Fe3O4. Chemical Communications. 51(51):9291-9293.

    Akhavan O. &Ghaderi E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 4(10):5731-5736.

    Altaa S. H. A., Alshamsi H. A. H. and Al-Hayder L. S. J. (2018). Rhodamine B removal on A-rGO/cobalt oxide nanoparticles composite by adsorption from contaminated water. Journal of Molecular Structure. 1161:356-365.

    Anand A., Unnikrishnan B., Mao J.Y., Lin H.J. &Huang C.C. (2018). Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling-a review. Desalination. 429(April 2017): 119-133.

    Anh H.Q., Trang Q.T.T., NgoV.D., Hoa LT.M., Giang L.H., Quang N.K. &Tuan V.A. (2015). Study on dye reactive RR195 adsorption ability from aqueous solution by graphene oxide and graphene. Journal of Analytical Sciences. 20(4):20-27 (In Vietnamese).

    Chandra V., Park J., Chun Y., Lee J. W., Hwang I. C. & Kim K.S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano.4(7):3979-3986.

    Chen S., Hong J., Yang H. &Yang J. (2013). Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. Journal of Environmental Radioactivity. 126:253-258.

    Cruz M., Gomez C., Durán-Valle C., Pastrana Martinez L., Faria J., Silva A., Faraldos M. &Bahamonde A. (2015). Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science. 416:1013-1021.

    Cui L., Wang Y., Gao L., Hu L., Yan L., Wei Q. &Du B. (2015). EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chemical Engineering Journal. 281:1-10.

    Dada A.., Olalekan A.., Olatunya A..&Dada O. (2012). Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk.IOSR Journal of Applied Chemistry. 3(1):38-45.

    Dadvar E., Kalantary R.R., Panahi H.A. &Peyravi M. (2017). Efficiency of polymeric membrane graphene oxide-TiO2 for removal of azo dye. Hindawi Journal of Chemistry. pp. 1-13 (Article ID 6217987).

    Daniel R.D., Sungjin P., Christopher W.B. & Rodney S.R. (2010). The chemistry of graphene oxide. The Royal Society of Chemistry. 39:228-240.

    De Gisi S., Lofrano G., Grassi M. &Notarnicola M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies. 9:10-40.

    Deng J.H., Zhang X.R., Zeng G.M., Gong J.L., Niu Q.Y. &Liang J. (2013). Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chemical Engineering Journal. 226:189-200.

    Dimiev A.M., Tour J.M., Science M., Science C., Science N., StreetM., States U., Materials A.Z.E., Avenue M. &States U. (2014). Mechanism of graphene oxide formation. ACS Nano. 8(3):3060-3068.

    Dong S., Dou X., Mohan D. & Pittman C.U. (2015). Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb (V) adsorption from water. Chemical Engineering Journal. 270:205-214.

    Dreyer D.R., Jia H.P. &Bielawski C.W. (2010). Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angewandte Chemie-International Edition. 49(38):6813-6816.

    Ersan G., Apul O.G., Perreault F. & Karanfil T. (2017). Adsorption of organic contaminants by graphene nanosheets: a review. Water Research. 126: 385-398.

    Farghali M.a., Salah El-Din T.a., Al-Enizi A.M. & El Bahnasawy R.M. (2015). Graphene/magnetite nanocomposite for potential environmental application. International Journal of Electrochemical Science. 10(1):529-537.

    Fei Y., Li Y., Han S. &Ma J. (2016). Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. Journal of Colloid and Interface Science. 484:196-204.

    Fu F. &Wang Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management. 92(3):407-418.

    Gadd G.M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology. 84(1): 13-28.

    Gadipelli S. & Guo Z.X. (2015). Graphene-based materials: synthesis and gas sorption, storage and separation. Progress in Materials Science. 69:1-60.

    Gao Y., Li Y., Zhang L., Huang H., Hu J., Shah S.M. and Su X. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science. 368(1):540-546.

    Geim A.K. & Novoselov K.S. (2007). The rise of graphene. Nature Materials. 6:183-191.

    Gonzalez-olmos R., Martin M. J., Georgi A., Kopinke F. & Oller I. (2012). Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B, Environmental. 125: 51-58.

    González J.A., Villanueva M.E., Piehl L.L. & Copello G.J. (2015). Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes : adsorption and desorption study. Chemical Engineering Journal. 280: 41-48.

    Guo S., Zhang G., Guo Y. & Yu J.C. (2013). Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon. 60: 437-444.

    Gupta Chatterjee S., Chatterjee S., Ray A.K. &Chakraborty A. K. (2015). Graphene-metal oxide nanohybrids for toxic gas sensor: a review. Sensors and Actuators, B: Chemical. 221(2):1170-1181.

    Han Q., Wang Z., Xia J., Chen S., Zhang X. & Ding M. (2012). Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta.101: 388-395.

    Hashim N., Muda Z., Hussein M.Z., Isa I.M., Mohamed A., Kamari A., Bakar S.A., Mamat M. & Jaafar A.M. (2016). A brief review on recent graphene oxide-based material nanocomposites: synthesis and applications. Journal of Materials and Environmental Science. 7(9): 3225-3243.

    He F., Fan J., Ma D., Zhang L., Leung C. and ChanH. L. (2010). The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon. 48 (11):3139-3144.

    He H., Klinowski J., Forster M. and Lerf A. (1998). A new structural model for graphite oxide. Chemical Physics Letters. 287:53-56.

    Hieu N. H., Kieu Đ. T. M. and Diem P. T. H. (2015). Synthesis of Fe3O4/graphene oxide nanocomposite for treatment of heavy metals in the contaminated wastewater. Science and Technology Development. 18(6):212-220 (in Vietnamese).

    Hoa L.T.M., Anh H.Q., Giang L.H., Quang N.K., Quyet N.T., Trang Q.T.T. and Tuan V.A. (2015). Study on dye reactive RR195 photodegradation ability from aqueous solution by CoFe2O4/GO composite. Vietnam Journal of Catalysis and Adsorption. 5(2):39-44.

    Hummers W.S. & Offeman R.E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society. 80(6):1339-1349.

    Jumeri F.A., Lim H.N., Ariffin S.N., Huang N.M., Teo P.S., Fatin S.O., Chia C.H. & Harrison I. (2014). Microwave synthesis of magnetically separable ZnFe2O 4-reduced graphene oxide for wastewater treatment. Ceramics International. 40(5): 7057-7065.

    Koushkbaghi S., Jafari P., Rabiei J., Irani M. & Aliabadi M. (2016). Fabrication of PET/PAN/GO/Fe3O4nanofibrous membrane for the removal of Pb(II) and Cr(VI) ions. Chemical Engineering Journal. 301(II):42-50.

    Kyzas G.Z., Deliyanni E.A. & Matis K.A. (2014). Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology and Biotechnology. 89(2):196-205.

    Li F., Jiang X., Zhao J. &Zhang S. (2015). Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy. 16: 488-515.

    Liao G., Chen S., Quan X., Yu H. &Zhao H. (2012). Graphene oxide modified g-C3N4hybrid with enhanced photocatalytic capability under visible light irradiation. Journal of Materials Chemistry. 22(6):2721-2726.

    Liao N., Liu Z., Zhang W., Gong S., Ren D., Ke L., Lin K., Yang H., He F. &Jiang H. (2016). Preparation of a novel Fe3O4/graphene oxide hybrid for adsorptive removal of methylene blue from water. Journal of Macromolecular Science, Part A. 53(5)276-281.

    Liu L., Bai H., Liu J. &Sun D.D. (2013).Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. Journal of Hazardous Materials. 261: 214-223.

    Liu S.Q., Xiao B., Feng L.R., Zhou S.S., Chen Z.G., Liu C.B., Chen F., Wu Z.Y., Xu N., Oh W.C. & Meng Z.Da. (2013). Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation. Carbon. 64:197-206.

    Liu S., Zeng T.H., Hofmann M., Burcombe E., Wei J. &Jiang R. (2011). Antibacterial activity of graphite,graphite oxide,graphene oxide,and reduced graphene oxide : membrane and oxidative stress. ACS Nano. 5(9):6971-6980.

    Malato S., Fernández-Ibáñez P., Maldonado M. I., Blanco J. and Gernjak W. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today. Vol 147 (1). pp. 1-59.

    Mansoori G. a, Bastami T. R., Ahmadpoura and Eshaghi Z. (2008). Chapter 2 environmental application of nanotechnology. Annual Review of Nano Research. Vol 2. pp. 1-73.

    Mauter M. S. and Elimelech M. (2008). Environmental applications of carbon-based nanomaterials. Environmental Science and Technology. Vol 42 (16). pp. 5843-5859.

    Mejías Carpio I. E., Santos C. M., Wei X. and Rodrigues D. F. (2012). Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale.Vol 4. pp. 4746-4756.

    Nanda S. S., Yi D. K. and Kim K. (2016). Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Nature Publishing Group. Vol 6. pp. 1-12 (Article ID 28443).

    Neyens E. and Baeyens J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials. Vol 98 (1-3). pp. 33-50.

    Nguyen T. H. D., Lin M. and Mustapha A. (2015). Toxicity of graphene oxide on intestinal bacteria and Caco-2 cells. Journal of Food Protection. Vol 78 (5). pp. 996-1002.

    Nguyen V. H. (2016). Recent advances in experimental basic research on graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology. Vol 7 (2). pp. 1-9 (Article ID 023001).

    Parcharoen Y., Termsuksawad P. and Sirivisoot S. (2017). Bacterial stress and osteoblast responses on graphene oxide-hydroxyapatite electrodeposited on titanium dioxide nanotube arrays. Journal of Nanomaterials. Vol 2017. pp. 1-12.

    Perreault F., Andreia F. de F., Siamak N. and Menachem E. (2015). Antimicrobial properties of graphene oxide nanosheets : why size matters. ACS Nano. Vol 9 (7). pp. 7226-7236.

    Prasad K., Lekshmi G. S., Ostrikov K., Lussini V., Blinco J., Mohandas M., Vasilev K., Bottle S., Bazaka K. and Ostrikov K. (2017). Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Scientific Reports. Vol 7 (1). pp. 1-11.

    Prasanna L., Reddy J., Roh H., Choi Y., Chang Y. and Yang J. (2015). Adsorption removal of Co (II) from waste-water using graphene oxide. Hydrometallurgy. Vol 165 (1). pp. 90-96.

    Qi K., Sun Y., Duan H. and Guo X. (2015). A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite. Corrosion Science. Vol 98. pp. 500-506.

    Sherlala A. I. A., Raman A. A. A., Bello M. M. and Asghar A. (2018). A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere. Vol 193. pp. 1004-1017.

    Siddiqui S. I. and Chaudhry S. A. (2018). A review on graphene oxide and its composites preparation and their use for the removal of As3+and As5+from water under the effect of various parameters: Application of isotherm, kinetic and thermodynamics. Process Safety and Environmental Protection. Vol 119. pp. 138-163.

    Song B., Zhang C., Zeng G., Gong J., Chang Y. and Jiang Y. (2016). Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection. Archives of Biochemistry and Biophysics.Vol 604 (Supplement C). pp. 167-176.

    Sweetman M., May S., Mebberson N., Pendleton P., Vasilev K., Plush S. and Hayball J. (2017). Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification.Journal of Carbon Research. Vol 3 (18). pp. 1-29.

    Tam L. T., Dinh N. X., Van Cuong N., Van Quy N., Huy T. Q., Ngo D. T., Mølhave K. and Le A. T. (2016). Graphene oxide/silver nanohybrid as multi-functional material for highly efficient bacterial disinfection and detection of organic dye. Journal of Electronic Materials. Vol 45 (10). pp. 5321-5333.

    Tang Z., Shen S., Zhuang J. and Wang X. (2010). Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angewandte Chemie-International Edition.Vol 49 (27). pp. 4603-4607.

    Thu T. V. (2017). Green synthesis of reduced graphene oxide/Fe3O4/Ag ternary nanohybrid and its application as magnetically recoverable catalyst in the reduction of 4‐nitrophenol. Applied Organometallic Chemistry. Vol e3781 (November 2016). pp. 1-9.

    Tran H. V, Bui L. T., Dinh T. T., Le D. H., Huynh C. D. and Trinh A. X. (2017). Graphene oxide/Fe3O4/chitosan nanocomposite : a recoverable and recyclable adsorbent for organic dyes removal. Application to methylene blue. Materials Research Express. Vol 4. pp. 1-9 (Article ID 035701).

    Vi T. T. T. and Lue S. J. (2017). Preparation of silver nanoparticles loaded graphene oxide nanosheets for antibacterial activity. IOP Conference Series: Materials Science and Engineering. Vol 162. pp. 1-5 (Article ID 012033).

    Visa M., Popa N. and Chelaru A. (2018). A comparative analysis of pollutants adsorption and photocatalysis on composite materials synthesized from fly ash. In Nearly Zero Energy Communities(pp. 586-608). Springer Proceedings in Energy.

    Wang J., Tang B., Tsuzuki T., Liu Q., Hou X. and Sun L. (2012). Synthesis, characterization and adsorption properties of superparamagnetic polystyrene/Fe3O4/graphene oxide. Chemical Engineering Journal. Vol 204-205 (February 2014). pp. 258-263.

    Wang S., Sun H., Ang H. M. and Tadé M. O. (2013). Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chemical Engineering Journal. Vol 226. pp. 336-347.

    Wu X., Tan S., Xing Y., Pu Q., Wu M. and Zhao J. X. (2017). Graphene oxide as an efficient antimicrobial nanomaterial for eradicating multi-drug resistant bacteria in vitro and in vivo. Colloids and Surfaces B: Biointerfaces. Vol 157. pp. 1-9.

    Xie G., Xi P., Liu H., Chen F., Huang L., Shi Y., Hou F., Zeng Z., Shao C. and Wang J. (2012). A facile chemical method to produce superparamagnetic graphene oxide-Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. Journal of Materials Chemistry. Vol 22 (3). pp. 1033-1039.

    Yang S.-T., Luo J., Liu J.-H., Zhou Q., Wan J., Ma C., Liao R., Wang H. and Liu Y. (2013). Graphene oxide/chitosan composite for methylene blue adsorption. Nanoscience and Nanotechnology Letters. Vol 5 (3). pp. 372-376.

    Yousefi M., Dadashpour M., Hejazi M., Hasanzadeh M., Behnam B., Guardia M. De, Shadjou N. and Mokhtarzadeh A. (2016). Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Materials Science & Engineering C. Vol 74. pp. 568-581.

    Yu L., Chen J., Liang Z., Xu W., Chen L. and Ye D. (2016). Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst. Separation and Purification Technology. Vol 171. pp. 80-87.

    Zebedius K., Bhaumik M., Onyango M. S. and Maity A. (2015). High-performance towards Cr (VI) removal using multi-active sites of polypyrrole-graphene oxide nanocomposites : Batch and column studies. Chemical Enggineering Journal. Vol 262. pp. 921-931.

    Zhang W., Zhou C. and Zhou W. (2011). Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bulletin of Environmental Contamination and Toxicology. Vol 87. pp. 86-90.

    Zhu Z., Su M., Ma L., Ma L., Liu D. and Wang Z. (2013). Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability. Talanta. Vol 117 (Supplement C). pp. 449-455.

    Zubir N. A., Yacou C., Motuzas J., Zhang X. and Diniz da Costa J. C. (2014). Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Scientific Reports. Vol 4. pp. 1-8 (Article ID 4594).

    Zubir N. A., Yacou C., Zhang X. and Diniz Da Costa J. C. (2014). Optimisation of graphene oxide-iron oxide nanocomposite in heterogeneous Fenton-like oxidation of acid orange 7. Journal of Environmental Chemical Engineering. Vol 2 (3). pp. 1881-1888