IN VITROMODELS FOR ANGIOGENESIS

Ngày nhận bài: 24-03-2015

Ngày duyệt đăng: 22-07-2015

DOI:

Lượt xem

0

Download

0

Chuyên mục:

THÔNG TIN NGẮN

Cách trích dẫn:

IN VITROMODELS FOR ANGIOGENESIS

Ngo Xuan Trung (*) 1, 2

  • 1 Department of Biotechnology, Graduate School of Engineering, Osaka University,2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
  • 2 Faculty of Food Science and Technology, Viet Nam National University of Agriculture, Viet Nam
  • Từ khóa

    Angiogenesis, cell sheet, endothelial cells

    Tóm tắt


    Angiogenesis, the formation of new blood vessels, is an essential process for tissue and organ development, wound healing and pathological events. To understand the mechanism of angiogenesis, choosing a suitable model for research is important and sometimes difficult. This review introduces some of the current and popular in vitro models for angiogenesis research, especially for investigating the morphological differentiation process of endothelial cells, including two-dimensional and three-dimensional models. The fabrication methods, advantages, limitations of each model and some future perspectives are discussed.

    Tài liệu tham khảo

    Achilli, T. M., Meyer, J. and Morgan, J. R. (2012). Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Ther., 12: 1347-1360.

    Albini, A. and Benelli, R. (2007). The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat. Protoc.,2:504-511.

    Albini, A., Benelli, R., Noonan, D. M. and Brigati, C. (2004). The "chemoinvasion assay": a tool to study tumor and endothelial cell invasion of basement membranes. Int.J. Dev. Biol.,48:563-571.

    Arnaoutova, I., George, J., Kleinman, H. K. and Benton, G. (2009). The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis, 12:267-274.

    Asakawa, N., Shimizu, T., Tsuda, Y., Sekiya, S., Sasagawa, T., Yamato, M., Fukai, F. and Okano, T. (2010). Pre-vascularization of in vitrothree-dimensional tissues created by cell sheet engineering. Biomaterials, 31:3903-3909.

    Auerbach, R., Lewis, R., Shinners, B., Kubai, L. and Akhtar, N. (2003). Angiogenesis assays: A critical overview. Clin. Chem.,49:32-40.

    Bahramsoltani, M., Plendl, J., Janczyk, P., Custodis, P. and Kaessmeyer, S. (2009). Quantitation of angiogenesis and antiangiogenesis in vivo, ex vivoand in vitro- an overview. Altex-Altern Tierexp., 26:95-107.

    Bayless, K. J. and Davis, G. E. (2003). Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem.Biophys.Res. Commun., 312:903-913.

    Bayless, K. J. and Johnson, G. A. (2011). Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J. Vasc. Res.,48:369-385.

    Cao, Y. (2010). Angiogenesis: What can it offer for future medicine? Exp. Cell Res.,316:1304-1308.

    Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438:932-936.

    Coomber, B. L. and Gotlieb, A. I. (1990). In vitroendothelial wound repair - interactionof cell-migration and proliferation. Arteriosclerosis,10:215-222.

    Deroanne, C. F., Colige, A. C., Nusgens, B. V. and Lapiere, C. M. (1996). Modulation of expression and assembly of vinculin during in vitrofibrillar collagen-induced angiogenesis and its reversal. Exp. Cell Res.,224:215-223.

    Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med.,1:27-31.

    Friedrich, J., Seidel, C., Ebner, R. and Kunz-Schughart, L. A. (2009). Spheroid-based drug screen: considerations and practical approach. Nat. Protoc.,4:309-324.

    Ghajar, C. M., Chen, X., Harris, J. W., Suresh, V., Hughes, C. C. W., Jeon, N. L., Putnam, A. J. and George, S. C. (2008). The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys J., 94:1930-1941.

    Glen, K., Luu, N. T., Ross, E., Buckley, C. D., Rainger, G. E., Egginton, S. and Nash, G. B. (2012). Modulation of functional responses of endothelial cells linked to angiogenesis and inflammation by shear stress: Differential effects of the mechanotransducer CD31. J. Cell Physiol., 227:2710-2721.

    Griffith, L. G. and Naughton, G. (2002). Tissue engineering - Current challenges and expanding opportunities. Science, 295:1009-1014.

    Hall, H. and Hubbell, J. A. (2004). Matnix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating alpha v beta 3-integrin and activating VEGF-R2. Microvasc. Res.,68:169-178.

    Haraguchi, Y., Shimizu, T., Sasagawa, T., Sekine, H., Sakaguchi, K., Kikuchi, T., Sekine, W., Sekiya, S., Yamato, M., Umezu, M. et al. (2012a). Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc.,7:850-858.

    Haraguchi, Y., Shimizu, T., Yamato, M. and Okano, T. (2012b). Scaffold-free tissue engineering using cell sheet technology. Rsc. Adv.,2:2184-2190.

    Hsu, Y. H., Moya, M. L., Abiri, P., Hughes, C. C. W., George, S. C. and Lee, A. P. (2013). Full range physiological mass transport control in 3D tissue cultures. Lab Chip,13:81-89.

    Inamdar, N. K. and Borenstein, J. T. (2011). Microfluidic cell culture models for tissue engineering. Curr. Opin. Biotech.,22:681-689.

    Ito, A., Shinkai, M., Honda, H. and Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. J.Biosci. Bioeng.,100:1-11.

    Iwahana, M., Nakayama, Y., Tanaka, N. G., Goryo, M. and Okada, K. (1996). Quantification of tumour-induced angiogenesis by image analysis. Int. J. Exp.Pathol.,77:109-114.

    Jain, R. K., Schlenger, K., Hockel, M. and Yuan, F. (1997). Quantitative angiogenesis assays: Progress and problems. Nat. Med.,3:1203-1208.

    Kanayama, S., Nishida, K., Yamato, M., Hayashi, R., Sugiyama, H., Soma, T., Maeda, N., Okano, T. and Tano, Y. (2007). Analysis of angiogenesis induced by cultured corneal and oral mucosal epithelial cell sheets in vitro. Exp. Eye Res.,85:772-781.

    Kelm, J. M. and Fussenegger, M. (2010). Scaffold-free cell delivery for use in regenerative medicine. Adv. Drug. Deliv.Rev.,62:753-764.

    Kim, J. B. (2005). Three-dimensional tissue culture models in cancer biology. Semin.Cancer Biol., 15:365-377.

    Kino-oka, M., Ngo, T. X., Nagamori, E., Takezawa, Y., Miyake, Y., Sawa, Y., Saito, A., Shimizu, T., Okano, T. and Taya, M. (2012). Evaluation of vertical cell fluidity in a multilayered sheet of skeletal myoblasts. J.Biosci. Bioeng.,113:128-131.

    Kniazeva, E. and Putnam, A. J. (2009). Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. AmJ.Physiol.Cell Physiol.,297:C179-C187.

    Kubota, Y., Kleinman, H. K., Martin, G. R. and Lawley, T. J. (1988). Role of laminin and basement-membrane in the morphological-differentiation of human-endothelial cells into capillary-like structures. J. Cell Biol.,107:1589-1598.

    Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F. and Ebner, R. (2004). The use of 3-D cultures for high-throughput screening: The multicellular spheroid model. J.Biomol. Screen,9:273-285.

    Langer, R. and Vacanti, J. P. (1993). Tissue engineering.Science, 260:920-926.

    Lavik, E. and Langer, R. (2004). Tissue engineering: current state and perspectives. Appl. Microbiol. Biotechnol., 65:1-8.

    Malda, J. and Frondoza, C. G. (2006). Microcarriers in the engineering of cartilage and bone. Trends Biotechnol.,24:299-304.

    Matsusaki, M., Kadowaki, K., Nakahara, Y. and Akashi, M. (2007). Fabrication of celtular multilayers with nanometer-sized extracellular matrix films. Angew.Chem.Int.Ed.,46:4689-4692.

    Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K. et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med.,12:459-465.

    Munoz-Chapuli, R., Quesada, A. R. and Medina, M. A. (2004). Angiogenesis and signal transduction in endothelial cells. Cell Mol. Life Sci.,61:2224-2243.

    Nagai, N., Yunoki, S., Satoh, Y., Tajima, K. and Munekata, M. (2004). A method of cell-sheet preparation using collagenase digestion of salmon atelocollagen fibrillar gel. J.Biosci. Bioeng.,98:493-496.

    Nagamori, E., Trung Xuan, N., Takezawa, Y., Saito, A., Sawa, Y., Shimizu, T., Okano, T., Taya, M. and Kino-oka, M. (2013). Network formation through active migration of human vascular endothelial cells in a multilayered skeletal myoblast sheet. Biomaterials, 34:662-668.

    Nakamura, M., Iwanaga, S., Henmi, C., Arai, K. and Nishiyama, Y. (2010). Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication, 2:014110

    Nakatsu, M. N. and Hughes, C. C. W. (2008). An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol.,443:65-82.

    Nehls, V. and Drenckhahn, D. (1995). A novel, microcarrier-based in vitroassay for rapid and reliable quantification of 3-dimensional cell-migration and angiogenesis. Microvasc. Res.,50:311-322.

    Ngo, T. X., Nagamori, E., Shimizu, T., Okano, T., Taya, M. and Kino-Oka, M. (2014). In vitromodels for angiogensis research: a review. International Journal of Tissue Regeneration,5:37-45.

    Ngo, T. X., Nagamori, E., Kikuchi, T., Shimizu, T., Okano, T., Taya, M. and Kino-Oka, M. (2013). Endothelial cell behavior inside myoblast sheets with different thickness. Biotechnol. Lett.,35:1001-1008.

    Nie, F. Q., Yamada, M., Kobayashi, J., Yamato, M., Kikuchi, A. and Okano, T. (2007). On-chip cell migration assay using microfluidic channels. Biomaterials, 28:4017-4022.

    Nishiguchi, A., Yoshida, H., Matsusaki, M. and Akashi, M. (2011). Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv. Mater.,23:3506-3510.

    Ohno, M., Motojima, K., Okano, T. and Taniguchi, A. (2009). Maturation of the extracellular matrix and cell adhesion molecules in layered co-cultures of HepG2 and endothelial cells. J. Biochem.,145:591-597.

    Okano, T., Yamada, N., Sakai, H. and Sakurai, Y. (1993). A novel recovery-system for cultured-cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res.,27:1243-1251.

    Pepper, M. S., Belin, D., Montesano, R., Orci, L. and Vassalli, J. D. (1990). Transforming growth factor-beta-1 modulates basic fibroblast growth-factor induced proteolytic and angiogenic properties of endothelial-cells in vitro. J.Cell Biol.,111:743-755.

    Qiu, F., Chen, Y., Cheng, J., Wang, C., Xu, H. and Zhao, X. (2010). A simple method for cell sheet fabrication using mica surfaces grafted with peptide detergent A(6)K. Macromol. Biosci.,10:881-886.

    Sekiya, S., Shimizu, T., Yamato, M., Kikuchi, A. and Okano, T. (2006). Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem.Biophys. Res. Commun.,341:573-582.

    Shimizu, T., Yamato, M., Kikuchi, A. and Okano, T. (2003). Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 24:2309-2316.

    Simons, M. (2005). Angiogenesis - Where do we stand now? Circulation, 111:1556-1566.

    Staton, C. A., Reed, M. W. R. and Brown, N. J. (2009). A critical analysis of current in vitroand in vivoangiogenesis assays. Int.J.Exp. Pathol.,90:195-221.

    van Moorst, M. and Dass, C. R. (2011). Methods for co-culturing tumour and endothelial cells: systems and their applications. J. Pharm. Pharmacol.,63:1513-1521.

    Vernon, R. B. and Sage, E. H. (1999). A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res.,57:118-133.

    Wang, X. H., Chen, S. F., Jin, H. M. and Hu, R. M. (2009). Differential analyses of angiogenesis and expression of growth factors in micro- and macrovascular endothelial cells of type 2 diabetic rats. Life Sci.,84:240-249.

    Weis, M., Heeschen, C., Glassford, A. J. and Cooke, J. P. (2002). Statins have biphasic effects on angiogenesis. Circulation, 105:739-745.

    Wong, M. K. K. and Gotlieb, A. I. (1984). In vitroreendothelialization of a single-cell wound - role of microfilament bundles in rapid lamellipodia-mediated wound closure. Lab Invest.,51:75-81.