Ngày nhận bài: 20-07-2020 / Ngày duyệt đăng: 10-09-2020
Chuỗi thời gian chứa các giá trị thiếu xảy ra trong hầu hết mọi lĩnh vực khoa học ứng dụng. Bỏ qua các giá trị thiếu có thể dẫn đến giảm hiệu năng của hệ thống và kết quả không đáng tin cậy, đặc biệt là khi dữ liệu mất theo khoảng lớn. Do đó,xử lý dữ liệu thiếu là một bước rất quan trọng để thực hiện các công việc tiếp như phân lớp, phân tích dữ liệu... Bài viết này trước tiên nhằm giới thiệu các phương pháp xử lý dữ liệu thiếu. Tiếp theo một framework cho phép điền đầy dữ liệu mất mát cho chuỗi thời gian đơn biến được xây dựng. Cuối cùng, chúng tôi thực hiện so sánh hiệu suất của các phương pháp ước lượng giá trị thiếu trên ba chuỗi dữ liệu thời gian thực sử dụng bốn chỉ số đánh giá. Thông qua kết quả thử nghiệm, phương pháp DTWBI và eDTWBI đạt được kết quả vượt trội hơn các phương pháp khác khi dữ liệu có tính chất mùa vụ và không có thành phần xu hướng, trong khi đó thì na.interp tốt hơn các phương pháp khidữ liệu có cả hai tính chất mùa vụ và xu hướng.