Ngày nhận bài: 08-06-2021
Ngày duyệt đăng: 21-01-2022
DOI:
Lượt xem
Download
Cách trích dẫn:
ĐẶC ĐIỂM SINH HỌC CỦA CHỦNG Rhodococcussp. BPTC-316 CÓ KHẢ NĂNG PHÂN HỦY CHLORPYRIFOS VÀ KHÁNG NẤM
Từ khóa
Rhodococcussp., chlorpyrifos, Fusarium sp., Phytophthorasp., kháng nấm
Tóm tắt
Nghiên cứu được triển khai nhằm tuyển chọn được chủng vi khuẩn đất có khả năng phân hủy mạnh chlorpyrifos và sản sinh hoạt chất kháng nấm. Chủng BPTC-316 có hoạt tính sinh học cao nhất trong tổng số 32 chủng tiềm năng phân lập được thông qua sử dụng môi trường chọn lọc, đặc điểm nuôi cấy và phân tích trình tự gen 16S rRNA. Chủng BPTC-316 gần nhất (99,78%) với Rhodococcus tukisamuensisJCM 11308T(AB067734) dựa trên phân tích trình tự gen 16S rRNA. Chủng BPTC-316 có khả năng phân hủy 96,8% chlorpyrifos sau 10 ngày nuôi cấy. Bên cạnh đó, hoạt chất sinh học tổng số tách chiết từ chủng BPTC-316 có khả năng ức chế sinh trưởng cả hai chủng nấm kiểm định Fusarium oxysporumKACC 41083 và Phytophthora capsiciKACC 40483 với đường kính vòng kháng nấm lần lượt là 17,6 và 16,8mm.
Tài liệu tham khảo
Briceño G., Lamilla C., Leiva B., Levio M., Donoso-Piñol P., Schalchli H., Gallardo F. & Diez M.C. (2020). Pesticide-tolerant bacteria isolated from a biopurification system to remove commonly used pesticides to protect water resources. PLoS ONE 15(6): e0234865.
Browne H.P., Forster S.C., Anonye B.O., Kumar N., Neville B.A., Stares M.D., Goulding D. & Lawley T.D. (2016). Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature. 533: 543-546.
Bộ NN&PTNT (2020). Thông tư số 10/2020/TT-BNNPTNT ngày 09 tháng 9 năm 2020 về việc “Ban hành Danh mục thuốc bảo vệ thực vật được phép sử dụng, cấm sử dụng tại Việt Nam.
Bộ Tài nguyên và Môi trường (2008). Quy chuẩn Việt Nam (QCVN) số 15:2008/BTNMT được ban hành theo Quyết định số 16/2008/QĐ-BTNMT ngày 31/12/2008 của Bộ trưởng Bộ Tài nguyên và Môi trường
Chiba H., Agernatu H., Kaneto R., Terasawa T.I., Sakai K., Kazuyuki K. & Yoshioka T. (1999). Rhodopeptins (Mer-N1033), novel cyclic tetrapeptides with antifungal activity from Rhodococcussp. 1, taxonomy, fermentation, isolation, physio-chemical properties and biological activities. J Antibiot. 52(8): 695-699.
Chun J., Lee J.H., Jung Y., Kim M., Kim S., Kim B.K. & Lim Y.W. (2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol. 57(10): 2259-2261.
Dubey K.K. & Fulekar M.H. (2012). Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophiliaMHF ENV20. World J Microbiol Biotechnol. 28(4): 1715-1725.
Eaton D.L., Daroff R.B., Autrup H., Bridges J., Buffler P., Costa L.G., Coyle.J., McKhann G., Mobley W.C., Nadel L., Neubert D., Schulte-Hermann R. &Spencer P.S.(2008).Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol. Critical Reviews in Toxicology. 38(2): 1-125.
Espinel-Ingroff A., Arthington-Skaggs B., Iqbal N., Ellis D., Pfaller M.A., Messer S., Rinaldi M., Fothergill A., Gibbs D.L. & Wang A. (2007). Multicenter evaluation of a new disk agar diffusion method for susceptibility testing of filamentous fungi with voriconazole, posaconazole, itraconazole, amphotericin B, and caspofungin. J Clin Microbiol. 45(6): 1811-1820.
Fang H., Yu Y., Chu X., Wang X., Yang X. & Yu J. (2009). Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. J Environ Sci. 21(3): 380-386.
Frederick J., Hennessy F., Horn U., Cortés P.T., Broek M., Strych U., Willson R., Hefer C.A., Daran J.M., Sewell T., Otten L.G. & Brady D. (2020). The complete genome sequence of the nitrile biocatalyst Rhodococcus rhodochrousATCC BAA-870. BMC Genomics. 21: 3.
Jee H.J. (1997). Strong Pathogenicity, Phytophthora blight. Retrieved fromhttp://genebank.rda.go.kr /eng/mic/cat on June 05, 2021.
Kaparullinaa E.N., Trotsenkoa Y.A. & Doroninaa N.V. (2019). Characterization of Rhodococcus wratislaviensis, a new Gram-positive facultative methylotroph, and properties of its C1 metabolism. Microbiology. 88(1): 46-53.
Kim N.H., Kim D.U., Kim I. & Ka J.O. (2013). Syntrophic biodegradation of butachlor by Mycobacterium sp. J7A and Sphingobiumsp. J7B isolated from rice paddy soil. FEMS Microbiol Lett. 344(2): 114-120.
Kim W.S., Kim W.G., Cho W.D. & Yu S.H. (2002).Wilt of Perilla caused by Fusariumspp. Plant Pathol J. 18(5): 293-299.
Kimura M. (1983). The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK
Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M. & Glöckner F.O. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and nextgeneration sequencing-based diversity studies. Nucleic Acids Res. 41(1): 1-11.
Krieg N.R&Padgett P.J.(2011) Phenotypic and physiological characterization methods. In Rainey, F and Oren A (eds.), Methods in Microbiology, Vol. 38, 1st ed., Academic Press, Oxford, UK.
Kumar S., Stecher G. & Tamura K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7): 1870-1874.
Lamilla C., Schalchli H., Briceño G., Leiva B., Donoso-Piñol P., Barrientos L., Rocha V.A.L., Freire D.M.G & Diez M.C. (2021). A Pesticide Biopurification System: A Source of Biosurfactant-Producing Bacteria with Environmental Biotechnology. Applications Agronomy. 11(4): 624.
Lane D.J. (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, NY, pp. 115-175.
Lovecka P., Pacovska I., Stursa P., Vrchotova B., Kochankova L. & Demnerova K. (2015). Organochlorinated pesticide degrading microorganisms isolated from contaminated soil. N Biotechnol. 32(1): 26-31.
List of Prokaryotic names with Standing in Nomenclature (LPSN) (2021). Genus Rhodococcus. Retrieved from https://lpsn.dsmz.de/ genus/rhodococcus on June 02, 2021.
Matsuyama H., Yumoto I., Kudo T. & Shida O. (2003). Rhodococcus tukisamuensissp. nov., isolated from soil. Int J Syst Evol Microbiol. 53(5): 1333-1337.
Pizzul L., Pilar Castillo M.d. & Stenström J. (2006). Characterization of selected actinomycetes degrading polyaromatic hydrocarbons in liquid culture and spiked soil. World J Microbiol Biotechnol. 22: 745-752.
Phùng Trí Dũng, Nguyễn Việt Hùng & Trần Thị Tuyết Hạnh (2013). Nguy cơ sức khỏe do phơi nhiễm chlorpyrifos trên đối tượng nông dân trồng lúa tại Thái Bình, Việt Nam: đánh giá nguy cơ sức khỏe bằng phương pháp xác suất. Tạp chí Y học dự phòng. 4(140): 26-35.
Rayu S., Nielsen U.N., Nazaries L. & Singh B.K. (2017). Isolation and Molecular Characterization of Novel Chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading Bacteria from Sugarcane Farm Soils. Front Microbiol. 8: 518.
Reasoner D.J. & Geldreich E.E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 49(1): 1-7.
Sambrook J. & Russell D.W. (2001). Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York. pp. 1-170.
Singh B.K & Walker A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev. 30: 428-471.
Singh B.K. (2009). Organophosphorus-degrading bacteria: Ecology and industrial applications. Nature Rev Microbiol. 7: 156-163.
Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. (1997). The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25(24): 4876-4882.
ur Rahman H.U., Asghar W., Nazir W., Sandhu M.A., Ahmed A. & Khalid N. (2021). A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Science of The Total Environment. 755(2): 142649.
Verma K., Agrawal N., Farooq M., Misra R.B. & Hans R.K. (2006). Endosulfan degradation by a Rhodococcusstrain isolated from earthworm gut. Ecotoxicol Environ Saf. 64(3): 377-81.
Villarreal-Chiu J.F., Quinn J.P. & McGrath J.W. (2012). The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front Microbio. 3: 19.
Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., Stackebrandt E., Starr M.P. & Truper H.G. (1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 37(4): 463-464.
Xu J.L., He J., Wang Z.C., Wang K., Li W.J., Tang S.K. & Li S.P. (2007). Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. Int J Syst Evol Microbiol. 57(12): 2754-2757.
Yellamanda B., Vijayalakshmi M., Kavitha A., Reddy D.K. & Venkateswarlu Y. (2016). Extraction and bioactive profile of the compounds produced by Rhodococcussp. VLD-10. 3 Biotech. 6(2): 261.
Zopf W. (1891). Uber Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. Ber Dtsch Bot Ges. 9: 22-28.